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FOREWORD 

Research r e l a t e d  t o  advanced nuclear  rocke t  propulsion is  

described here in .  

with M r .  Maynard F. Taylor ,  Nuclear Systems Divis ion,  NASA L e w i s  

Research Center as Technical Manager 

This  work w a s  performed under NASA Grant NsG-694 
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ABSTRACT 

Confined laminar mixing of d i s s i m i l a r  c i r c u l a r  axisymmetric je ts  

was s tudied ,  A b inary  isothermal  system of non-reacting gases  w a s  

considered. 

t h e  coflowing annular stream w a s  a f a s t  moving l i g h t  gas .  This  

i nves t iga t ion  provides valuable  information about t he  hydrodynamics 

of the  coax ia l  flow gas-core nuclear  r e a c t o r  

The c e n t r a l  j e t  cons is ted  of a slow moving heavy gas and 

The boundary l aye r  equat ions i n  c y l i n d r i c a l  coord ina tes  were 

used t o  formulate the  mathematical model. These equat ions were t r ans -  

formed t o  the  von Mises plane f o r  numerical s t a b i l i t y ,  and f u r t h e r  t o  

the  cp-z plane t o  obta in  a b e t t e r  r ep resen ta t ion  of t he  flow problem 

i n  the  c e n t r a l  region.  

f i n i t e  d i f f e rence  scheme. Karplus '  as w e l l  as von Neumann's methods 

were used t o  determine t h e  numerical s t a b i l i t y  condi t ions  f o r  t he  

f i n i t e  d i f f e rence  equat ions.  Typical  running t i m e  on the  II3M 360/40 

computer w a s  about 10 minutes f o r  ob ta in ing  r e s u l t s  f o r  t he  complete 

en t rance  region,  The numerical method developed w a s  a l s o  used t o  

generate  t h e  s o l u t i o n  f o r  t he  classical en t rance  flow problem and t h e  

The so lu t ion  was obtained by an e x p l i c i t  

agreement of t h i s  so lu t ion  wi th  t h e  a v a i l a b l e  so lu t ions  provided a 

v e r i f i c a t i o n  of t h e  method. For the  r e s u l t s  of t h e  confined j e t  mix- 

ing problem, p a r t i a l  check w a s  a l s o  obtained by comparing t h e  numeri- 

c a l  va lues  of t h e  f u l l y  developed flow parameters wi th  the  corresponding 
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asymptotic values  computed independently from simple t h e o r e t i c a l  

considerat ions.  

A d e t a i l e d  parametric i nves t iga t ion  of t h e  present  problem 

w a s  c a r r i e d  out and cons i s t ed  of studying t h e  e f f e c t s  of t h e  para- 

, r a d i u s  r a t i o  - meters - v e l o c i t y  r a t i o  - , dens i ty  r a t i o  - u2 P1 Rl 

Ul P2 R y  

based 
NSc,2 of ou te r  stream, Schmidt number 

v2 
NRe, 2 Reynolds number 

on outer  stream and v i s c o s i t y  r a t i o  - - on t h e  length of t h e  m a s s  

f r a c t i o n  p o t e n t i a l  co re  L , length of t he  v e l o c i t y  p o t e n t i a l  co re  
Pl 

a1 

t h e  c e n t e r l i n e  v e l o c i t y  v , t h e  w a l l  m a s  f r a c t i o n  al 

and t h e  index of t h e  e f f e c t  of mixing ‘f/ . The numerical method 

permitted l a r g e  i n i t i a l  v a r i a t i o n s  of - , 
were obtained i n  the  form of v e l o c i t y  and mass f r a c t i o n  f i e l d s  and 

Lv ’ =,1 Y 

P1 R1 
and - . R e s u l t s  - u2 

Ul R p2 

are v a l i d  i n  t h e  near j e t  region as w e l l  as i n  t h e  developing region 

downstream. O f  t h e  57 cases inves t iga t ed ,  t h e  r e s u l t s  of some se l ec t ed  

runs are presented i n  order  t o  show only t y p i c a l  e f f e c t s  of t h e  para- 

meters of t h e  problem. (These 57 cases are t abu la t ed  i n  Appendix De> 

The p r i n c i p a l  r e s u l t s  of t h e  parametric study show t h a t ,  f o r  
u2 

Ul m1 
i n -  

LV 
confined j e t  mixing, as - increases ,  L decreases but  

creases, and as - increases ,  L increases  bu t  

This  behavior of L i s  i n  d i r e c t  c o n t r a s t  t o  t h e  r e s u l t s  a v a i l a b l e  

f o r  unconfined mixing where 

inc reases  as - increases.  The present  study shows a l s o  t h a t  an in-  

crease i n  - r e s u l t s  i n  r a p i d  change of t h e  c e n t e r l i n e  v a l u e s ,  i.e., 

r a p i d  mixing, and a narrower jet  as w e l l  as a s h o r t e r  developing length. 

Pl 

P2 a1 
decreases.  

LV 

V 
u2 

decreases  as - i nc reases  and L 
LV Ul V 

P1 

P2 
u2 

Ul 
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PI 

p2 
Fur ther ,  an increase  i n  - reduces t h e  c e n t e r l i n e  v e l o c i t y  i n  the  

mixing region and increases  the  developing length.  F ina l ly ,  ‘ll 
u2 P, 

decreases  as - increases  and 1 increases  as increases ,  thus  
u, p2 

showing r ap id  mixing, 

on the  laminar mixing compare wi th  u2 Pl 

Ul p2 
The e f f e c t s  of - and - 

those ava i l ab le  f o r  tu rbulen t  j e t  mixing. Hence., t he  present  s tudy 

provides t rends  which are u s e f u l  i n  understanding turbulen t  j e t  mixing. 

Rl 
and reduct ion of - p, 

p2 R 

were found t o  be the  main f a c t o r s  f o r  s t a b i l i z i n g  the  numerical solu-  

A t  high v e l o c i t y  r a t i o s ,  increase  i n  - 

t i ons .  For some of the  cases  inves t iga ted ,  a p o s i t i v e  pressure  grad i -  

e n t  o r  an o s c i l l a t o r y  negat ive pressure  grad ien t  w a s  observed; a 

s u i t a b l e  explanat ion f o r  t h i s  behavior w a s  not  found. 

The ana lys i s  presented g ives  use fu l  i n s i g h t  i n t o  the  complex 

problem of incompressible laminar confined jet  mixing. 
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CHAPTER 1 

INTRODUCTION 

C i rcu la r  confined j e t  mixing takes  p lace  between two streams 

i n  concentr ic  ducts ,  downstream of t h e  pos i t i on  where t h e  inner  duct 

is discontinued, allowing the  j e t  stream from t h e  inner duct t o  mix 

with the  confined outer  stream. Mixing and d i f f u s i o n  take place i n  

t h e  entrance region which is composed of an i n i t i a l  mixing region 

d i r e c t l y  downstream from t h e  jet  ex i t ,  followed by a developing region.  

The je t  and t h e  annulus streams m i x  p r imar i ly  i n  t h e  i n i t i a l  mixing 

region. I n  the  developing region,  t h e  ve loc i ty  p r o f i l e s  become more 

and more of a "similart1 shape as t h e  flow becomes f u l l y  developed. 

I n  seve ra l  p r a c t i c a l  appl ica t ions ,  j e t  mixing occurs i n  a 

confined outer  stream as i n  t h e  case  of jet  pumps, e j e c t o r s ,  j e t  en- 

g ine  combustion chambers and a l s o  i n  gaseous co re  r e a c t o r s  f o r  nuclear  

rocket  engines. The f e a s i b i l i t y  of t h e  last appl ica t ion  has  been 

s tudied  i n  d e t a i l  by Ragsdale and h i s  a s soc ia t e s  The present  

study has  a l s o  been motivated by t h e  recent  i n t e r e s t  i n  t h e  gas-core 

rocket  engines where a low ve loc i ty  f i s s i o n a b l e  gas  is e j ec t ed  co- 

a x i a l l y  i n t o  a high v e l o c i t y  hydrogen p rope l l an t  stream. The primary 

goal  of such an advanced nuclear  rocket  engine is t o  produce a sub- 

s t a n t i a l l y  higher s p e c i f i c  impulse than t h e  850 seconds a v a i l a b l e  

from a s o l i d  co re  r eac to r .  It is a l s o  necessary t o  reduce t h e  l o s s  

of uranium t o  a minimum; such loss r e s u l t s  from t h e  mixing of t h e  

* Superscr ipt  numerals r e f e r  t o  s i m i l a r l y  numbered re ferences  a t  
end of r epor t .  

1 
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f l u i d  streams. Hence, f o r  optimum performance, it is  des i red  t o  make 

both the  s p e c i f i c  impulse and the  hydrogen t o  uranium flow rate r a t i o  

a maximum. 

of a confined f l u i d  j e t  system, The work presented i s  c a r r i e d  out  t o  

promote such understanding. Though only t h e  i n i t i a l  mixing region 

i s  of i n t e r e s t  f o r  t h e  gas-core nuclear  rocke t  s tud ie s ,  t he  e n t i r e  

mixing and developing regions a r e  inves t iga ted  so t h a t  t h e  r e s u l t s  

may be checked aga ins t  t he  known behavior of t h e  f u l l y  developed flow, 

Also, t h e  complete s tudy has  app l i ca t ions  beyond gas-core r eac to r  

p r  ob l e m s  . 

For t h i s  reason it is necessary t o  understand t h e  behavior 

Severa l  i nves t iga t ions  by t h e  Nuclear Systems Divis ion,  

NASA L e w i s  Research Center,  show t h a t  t h e  flow i n  a gas-core 

nuclear  r e a c t o r  i s  turbulen t  and t h a t  compress ib i l i ty  e f f e c t s  are 

neg l ig ib l e .  However, as an intermediate  s t e p  t o  t h e  turbulen t  

mixing problem, t h e  corresponding laminar problem is  analyzed; 

t h i s  study provides use fu l  information about t h e  confined mixing 

of coax ia l  jets. A l i t e r a t u r e  survey of pe r t inen t  s t u d i e s  w a s  

c a r r i e d  out and it shows t h a t  laminar jet  mixing has been inves- 

t i g a t e d  f o r  both incompressible and compressible cases bu t  t h a t  

most of t he  work is  l imi ted  t o  t h e  unconfined, i-e. ,  f r e e  j e t  

mixing; t he  more complex confined j e t  mixing has  not  been s tudied  

i n  s u f f i c i e n t  d e t a i l ,  
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1 e 1 L i t e r a t u r e  Survey 

1.1.1 Unconfined Jet  Mixing 

Free  j e t  mixing of f l u i d s  has  been ex tens ive ly  s tud ied  by 

seve ra l  i nves t iga to r s ,  experimentally as w e l l  as a n a l y t i c a l l y ,  The 

case  of laminar incompressible j e t  mixing w a s  f i r s t  analyzed by 

Schl icht ing4 i n  1933. 

as w e l l  as the  c i r c u l a r  jet i s su ing  i n t o  a medium a t  rest. Schl ich t -  

i ng ' s  analyses  w e r e  confirmed experimentally by Andrade and Tsien 

i n  1937, and w e r e  found not  t o  hold i n  t h e  near  jet region.  In 1951, 

Squire' obtained exact so lu t ion  of t h e  Navier Stokes equat ions;  

t h i s  turned out  t o  be the  so lu t ion  f o r  an a x i a l l y  symmetric laminar 

j e t  which had been earlier analyzed by Schl ich t ing .  

7 

Schl ich t ing  solved t h e  problems of t h e  plane 

5 

I n  1949, P a i  s tud ied  the  flow of a two-dimensional j e t  of 

compressible f l u i d  i s su ing  from a f i n i t e  opening, exhausting i n t o  a 

uniform stream, and f u r t h e r  inves t iga ted  t h e  mixing of two uniform 

streams of a compressible f l u i d .  This  i nves t iga t ion  w a s  f o r  laminar 

as w e l l  as turbulen t  f lows.  I n  1952, P a i  extended t h e  previous 8 

ana lys i s  t o  t h e  case of an a x i a l l y  symmetric j e t .  

t ransformation w a s  appl ied t o  the  flow equat ions and numerical in -  

t e g r a t i o n  w a s  used f o r  computing t h e  v e l o c i t y  and t h e  temperature 

f i e  Ids .  

The von Mises 

9 I n  1953, Torda used the  von Karman i n t e g r a l  p r i n c i p l e  t o  

analyze t h e  laminar incompressible mixing of two p a r a l l e l  streams 

having equal  v e l o c i t i e s .  This  case  w a s  r e f e r r e d  t o  a s  "symmetric 

mixing". I n  1955, Torda e t  all' analyzed t h e .  laminar incompressible 
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mixing of two-dimensional and axisymmetric jets. The analyses  were 

f o r  t h e  region downstream of t h e  p o t e n t i a l  co re  and ind ica ted  t h a t  

the boundaries of t h e  mixing reg ion  are curved, a f a c t  which had 

been observed experimentally but no t  confirmed a n a l y t i c a l l y  by 

previous inves t iga to r s  Fur ther ,  i n  1956 Torda and S t i l l w e l l  

presented a comprehensive r epor t  of t h e i r  a n a l y t i c a l  and experimental  

i nves t iga t ions  of laminar as w e l l  as turbulen t  mixing of je ts  f o r  in -  

compressible and compressible cases. 

11 

12 I n  1962, K le ins t e in  inves t iga ted  t h e  mixing of an axisym- 

met r ic  laminar j e t  of a conpress ib le  f l u i d  with a cons tan t  ex te rna l  

flow. The von Mises transformation w a s  used f o r  t h e  flow equations 

with a subsequent l i n e a r i z a t i o n  of t h e  v iscous  term. This  f a c i l i t a t e d  

the  determination of t he  v e l o c i t y  f i e l d  in  t h e  von Mises plane without 

use of t he  energy equation. 

ment with t h e  exact numerical ca l cu la t ions  of P a i  . 
The r e s u l t s  obtained i n d i c a t e  c l o s e  agree- 

8 

I n  1963, Weinstein and Todd13 s tudied  the  problem of mixing of 

laminar isothermal  coax ia l  streams of g r e a t l y  d i f f e r e n t  d e n s i t i e s .  

The ana lys i s  is based on t h e  boundary layer  assumptions with constant  

pressure  i n  t h e  e n t i r e  flow f i e l d  and t h e  so lu t ion  was obtained by 

numerical techniques.  It w a s  shown t h a t  the  v e l o c i t y  p o t e n t i a l  core  

length increases  with increasing r a t i o  of d e n s i t i e s  of inner  t o  outer  

streams and decreases  with increas ing  r a t i o  of v e l o c i t i e s  of ou ter  t o  

inner  streams. The inf luence  of t h e  i n i t i a l  boundary l aye r s  i n  the  

v e l o c i t y  p r o f i l e s  considerably increases  t h e  length of t h e  v e l o c i t y  

p o t e n t i a l  core .  
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I n  1964, Sherman and Grey14 c a r r i e d  out  a n a l y t i c a l  as w e l l  as 

experimental  i nves t iga t ions  of the Laminar mixing of a high temperature 

p a r t i a l l y  ionized subsonic argon plasma je t  wi th  a surrounding helium 

atmosphere. The boundary layer  approximations were used i n  the  analy-  

sis which involved t h e  simultaneous so lu t ion  of t h r e e  nonl inear  para- 

b o l i c  p a r t i a l  d i f f e r e n t i a l  equat ions by f i n i t e  d i f f e rence  techniques.  

The t r anspor t  p rope r t i e s  w e r e  computed by an improved vers ion  of t he  

Chapman-Enskog method. The r e s u l t s  ind ica ted  a r ap id  d i f f u s i o n  of 

t he  helium i n t o  t h e  argon j e t ;  d i f fus ion  of t h e  helium upstream of 

the  j e t  exit  s ec t ion  w a s  a l s o  shown by the  experiment. The axial  

g rad ien t s  of t h e  temperatures and t h e  v e l o c i t i e s  were small. 

1.1.2 Confined Jet  Mixing 

Laminar mixing of confined je ts  has  been experimentally shown 

t o  occur f o r  s u i t a b l e  i n l e t  cond i t ions ,  

experiments f o r  t h e  confined mixing of j e t s  of a i r  conta in ing  t r a c e r  

q u a n t i t i e s  of H C 1  or  NH3 and determined t h e  ex ten t  of t he  region of 

laminar flow f o r  var ious  en t rance  condi t ions .  However, only l i t t l e  

a n a l y t i c a l  o r  experimental  work has  been done on t h e  f l u i d  mechanics 

of confined laminar j e t  mixing. 

I n  1964, Wood'' conducted 

Mass t r a n s f e r  i n  confined laminar jet  mixing has been inves- 

t i g a t e d  t o  some ex ten t  during t h e  las t  several years .  Two recent  

s t u d i e s  pe r t inen t  t o  the  present  work are discussed here .  The range 

of a p p l i c a b i l i t y  of t he  model used by Burke and Schumann" (1928) w a s  

extended by Savage17 i n  1962. Enclosed laminar d i f fus ion  flames were 
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s tudied  and the  flame shape was predic ted  wi th  su rp r i s ing  success  i n  

s p i t e  of s eve ra l  assumptions such as spontaneous combustion, plug flow 

throughout t he  entrance region,  cons tan t  d i f f u s i o n  c o e f f i c i e n t ,  and 

absence of a11 forms of mixing o the r  than r a d i a l  d i f f u s i o n ,  Diffusion 

i n  a laminar, c i r c u l a r ,  confined jet r e a c t o r  was s tudied  by Wood ex- 

per imental ly  as w e l l  as a n a l y t i c a l l y .  

Wood used e thylene  and n i t rogen  f o r  t h e  primary and the  secondary 

streams, r e spec t ive ly .  The concent ra t ion  of e thylene i n  n i t rogen  was 

measured f o r  t h e  e n t i r e  f i e l d  f o r  t h i s  non-reacting system, I n  the  

mathematical model f o r  mass t r a n s f e r ,  Wood assumed t h e  ex is tence  of 

e i t h e r  plug flow o r  parabol ic  flow i n  the  mixing region.  Another 

major assumption w a s  t h a t  no r a d i a l  convection e x i s t ,  implying a 

d i f fus ion  con t ro l l ed  process.  For nea r ly  equal entrance v e l o c i t i e s ,  

the  ca l cu la t ed  concent ra t ion  p r o f i l e s  compared w e l l  wi th  the  experi- 

mental da t a .  The agreement d e t e r i o r a t e d  f o r  v e l o c i t y  r a t i o s  l a rge ly  

d i f f e r e n t  from u n i t y  when the  e f f e c t  of r a d i a l  convection w a s  no 

longer neg l ig ib l e ,  

15 

I n  h i s  experimental  s tud ie s ,  

I n  1966, Seider18 performed a n a l y t i c a l  s t u d i e s  of laminar, 

incompressible homogeneous j e t  mixing wi th  chemical r eac t ion ,  Seider 

transformed t h e  Navier Stokes equat ions t o  the  v o r t i c i t y  and the  

stream funct ion  equat ions which were solved numerically t o  determine 

the  v e l o c i t y  p r o f i l e s  The i m p l i c i t  a l t e r n a t i n g  d i r e c t i o n s  scheme 

w a s  used t o  obta in  t h e  numerical so lu t ion .  The s p e c i f i c  so lu t ions  

obtained provide a q u a n t i t a t i v e  desc r ip t ion  of the  mixing region of 

t he  laminar confined j e t ,  These r e s u l t s  w e r e  confirmed s e m i -  
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quan t i t a t ive ly  by h i s  dye-tracer experiments, 

p r o f i l e s  w e r e  obtained by solving t h e  coupled p a r t i a l  d i f f e r e n t i a l  

equations descr ib ing  m a s s  t r a n s f e r  with chemical r eac t ion  i n  t h e  en- 

t rance  region. Negl ig ib le  a x i a l  d i f fus ion  w a s  assumed and a modified 

Crank Nicholson method w a s  used f o r  these ca l cu la t ions .  Although 

these  computational schemes are claimed t o  y i e l d  uncondi t ional ly  

s t a b l e  numerical so lu t ions ,  l a rge  i n s t a b i l i t i e s  w e r e  encountered i n  

t h e  near j e t  region f o r  entrance flow condi t ions which are known t o  

y i e l d  laminar flow. The i n s t a b i l i t y  was a t t r i b u t e d  mainly t o  t h e  

d iscont inui ty  i n  t h e  flow a t  the  j e t  boundary. S i m i l a r  i n s t a b i l i t i e s  

w e r e  encountered a l s o  i n  t h e  present  i nves t iga t ion  and w i l l  be d i s -  

cussed later. For the  non-reacting case, t h e  r e s u l t s  obtained by 

Seider are i n  good agreement with the  concentrat ion measurements of 

Wood 

The concentrat ion 

Confined j e t  mixing has been inves t iga ted  a t  I l l i n o i s  I n s t i t u t e  

of Technology a l so ,  Fe je r  e t  a 1  c a r r i e d  out experimental  as w e l l  as 

a n a l y t i c a l  s tud ie s  of t h e  confined mixing o f  coax ia l  streams, I n  

t h e i r  a n a l y t i c a l  study, it w a s  pointed out  t h a t  t h e  r e s u l t s  obtained 

by using t h e  boundary layer  equat ions show good agreement with Wood's 

r e s u l t s  fo r  w a l l  concentrat ion.  Unsteady as w e l l  as s teady homogeneous 

mixing of confined laminar je ts  w e r e  s tud ied  by Agarwal and Torda 

19 

15 

20 

I n  these  s tud ie s ,  comparisons were a l s o  obtained f o r  so lu t ions  of t h e  

boundary layer  equations with so lu t ions  of t h e  Navier Stokes equations 

f o r  t h e  s teady flow conf igura t ions  of Seider ;  t h e  agreement with Se ider ' s  

r e s u l t s  w a s  s a t i s f a c t o r y .  Also,  Mehta and Lavan'' have obtained r e s u l t s  

/ 
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f o r  laminar incompressible homogeneous je t  mixing using the  Navier 

Stokes equat ions f o r  r a t i o  of v e l o c i t i e s  of ou ter  t o  inner  streams 

as high as 30. These r e s u l t s  have no t  y e t  been v e r i f i e d ,  

1.2 Present  Study 

The l i t e r a t u r e  survey presented shows t h a t  t h e  confined laminar 

mixing of streams of h ighly  d i f f e r i n g  f l u i d  p r o p e r t i e s  has  not  been 

s tudied  thus f a r .  I n  view of t h i s ,  t h e  present  i nves t iga t ion  of 

mixing of laminar axisymmetric confined c i r c u l a r  jets of d i s s i m i l a r  

f l u i d s  w a s  undertaken. I n  t h i s  study, an isothermal  and non-reacting 

flow f i e l d  i s  considered,  The flow problem i s  formulated as a boundary 

value problem and is solved numerically by an e x p l i c i t  f i n i t e  d i f f e rence  

scheme. The flow equat ions are approximated by t h e i r  f i n i t e  d i f f e rence  

forms such t h a t  f low parameters a t  any po in t  may be expressed e x p l i c i t l y  

i n  terms of known parameters only.  

s a t i s f y i n g  Karplus122 s t a b i l i t y  c r i t e r i o n ,  

d i t i o n s  f o r  t hese  equat ions were obtained a l s o  b e  using von Neumann's 

method, f i r s t  given by O'Brien, Hyman and Kaplan, and were found t o  

be similar t o  Karplus '  condi t ions ,  Whereas f o r  t h e  l i n e a r  problem, 

convergence of t h e  obtained numerical  so lu t ion  t o  t h e  exact  so lu t ion  

of t he  boundary va lue  problem i s  e s t ab l i shed  under t h e  hypothesis  due 

t o  Lax:' f o r  t h e  nonl inear  problem, convergence can be proved by a 

method due t o  Strang25. 

I V  and are solved using t h e  IBM 360/40 computer. 

Numerical s t a b i l i t y  i s  ensured by 

Numerical s t a b i l i t y  con- 

The flow equat ions are programmed i n  For t r an  
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The t h r e e  main con t r ibu t ions  of t h i s  i nves t iga t ion  are: 

1. The study enables an i n i t i a l  assessment of t he  gas-core 

nuclear  r eac to r  and p r e d i c t s  mixing f o r  confined jet flow 

conf igura t ions  which are d i f f i c u l t  t o  i nves t iga t e  experi-  

ment a1 l y  . 
2. The r e s u l t s  provide d e t a i l e d  information of laminar, 

incompressible, coax ia l  confined j e t  mixing f o r  most 

of t h e  parameters of p r a c t i c a l  i n t e r e s t .  

t hese  parameters over which t h e  boundary layer  equat ions 

are unquestionably v a l i d  is e s t ab l i shed .  

The range of 

3 .  A f i n i t e  d i f f e rence  method is  developed f o r  t he  so lu t ion  

of t h e  coupled nonl inear  parabol ic  p a r t i a l  d i f f e r e n t i a l  

equat ions,  

e f f e c t s  of compress ib i l i ty  and turbulence.  

This  method can be extended t o  study the  



CHAPTEX 2 

ANALYSIS 

2 . 1  Objective 

The laminar c o a x i a l  confined heterogeneous mixing of i n -  

compressible jets is s tud ied  a n a l y t i c a l l y  i n  t h e  present  work, 

The aims of t h e  inves t iga t ion  are: 

1. t o  ob ta in  t h e  v e l o c i t y  and concentrat ion f i e l d s  

i n  t h e  e n t i r e  mixing and developing regions,  

2. t o  determine t h e  parameters of importance and t o  

s tudy t h e i r  e f f e c t s  on mixing, and 

3 .  t o  f i n d  t h e  range of a p p l i c a b i l i t y  of t h e  numerical 

method developed f o r  t h e  j e t  mixing problem,using t h e  

boundary layer  equations.  

2.2 Mathematical Model 

The jet  mixing problem t o  be s tud ied  is represented math- 

ematical ly  by t h e  boundary layer  equations with appropriate  boundary 

conditions.  Auxil iary expressions are used t o  determine t h e  thermo- 

dynamic and t r anspor t  p r o p e r t i e s  of t h e  f l u i d  medium. The use  of 

boundary l aye r  equations may be supported by t h e  success wi th  which 

they have been appl ied i n  inves t iga t ions  of unconfined mixing 

(References 8, 12, 13, 14 and 26). Their  a p p l i c a t i o n  to t he  con- 

f ined  j e t  problem i s  f u r t h e r  j u s t i f i e d  i n  Chapter 4 .  

e f f e c t s  of compress ib i l i ty  and turbulence can be more e a s i l y  studied 

with t h e  use of t h e  boundary layer  equations than with t h e  Navier 

Stokes equations.  Thus, t h e  present  mathematical model i s  based 

on the  following assumptions: 

Also, t h e  

LO 
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1. 

2. 

3 .  

4 .  

5 .  

The boundary l aye r  assumptions. 

Steady s t a t e ,  isothermal flow without body 

fo rces  and chemical r eac t ion .  

Cyl indr ica l  duct of constant  cross-sect ion.  

Incompressible component f l u i d s .  

Invariance of binary d i f f u s i v i t y  DI2 with concentrat ion 

A t y p i c a l  geometry of t h e  problem i s  shown i n  Figure 1. 

The mathematical model is designed t o  p r e d i c t  t h e  mixing of 

two streams as it progresses i n  t h e  entrance region of t h e  outer  pipe.  

The so lu t ion  is obtained by a f i n i t e  d i f f e rence  method which w i l l  be 

discussed i n  Chapter 3 .  

p r o f i l e s  can be used with only minor modif icat ion of t he  numerical 

scheme developed. The equations and boundary condi t ions descr ibing 

the  mathematical model i n  t h e  physical  plane can now be w r i t t e n .  

Any types of entrance v e l o c i t y  and d e n s i t y  

2.3 Formulation of Problem i n  Physical  Plane ( r , z )  

2.3.1 Governing Di f f e ren t  i a l  Equations 

Continui ty  Equation 

. . 

Momentum Equation 

0 
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Diffus ion  Equation 

where 

D12 b inary  d i f f u s i v i t y  f o r  gas  mixture 

P 

V r 

V z 

r 

z 

s t a t i c  pressure  

mass average r a d i a l  v e l o c i t y  

m a s s  average a x i a l  v e l o c i t y  

r a d i a l  space coord ina te  

a x i a l  space coordinate  

v i s c o s i t y  of mixture 

mass average dens i ty  

mass f r a c t i o n  of spec ies  I 

2.3.2 Auxi l ia ry  Expressions 

The a u x i l i a r y  expressions r e l a t i n g  thermodynamic and t r anspor t  

p rope r t i e s  namely dens i ty ,  v i s c o s i t y  and b inary  d i f f u s i v i t y  a r e  given 

below. Except fo r  t h e  expression f o r  dens i ty ,  t h e  o the r  two equat ions 

may be found i n  References 27,28 and 29. 

Expression f o r  Density 

The expression for dens i ty  i s  der ived i n  Appendix A .  

- + -  L 
Ml M2 
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where 

molecular weight of f l u i d  component i 

dens i ty  of pure f l u i d  

Mi 

pP 

Expression f o r  V i scos i ty  

V i s c o s i t i e s  of monatomic o r  polyatomic non-pol-r gases  and gas 

mixtures a t  l o w  dens i ty  can be computed from the  following formulas. 

For a monatomic o r  polyatomic gas ,  

- 2.6693 x loe5 G 
* z 2 

- 
cLP 

where 

viacos i t y  of * pure component 
clP 
1: temperature 

(3 c o l l i s i o n  diameter 

c o l l i s i o n  i n t e g r a l  f o r  v i s c o s i t y  % 

For a b inary  gaseous mixture,  

where 

v i s c o s i t y  of component i 
i 

-112 112 

Q i j  

( 5 )  

(7) 
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Expression f o r  Binary D i f f u s i v i t y  

where 

s t a t i c  p r e s s u r e  of mixture i n  a t m .  

c o l l i s i o n  i n t e g r a l  f o r  mass d i f f u s i v i t y  

mole f r a c t i o n  of spec ie s  i 

co r rec t ion  f a c t o r  

Equations (l), (Z), ( 3 ) ,  (4), (6) and (8) involve the  seven 

unknowns v r ( r , z ) ,  v z ( r , z ) ,  % ( z l 9  ul(r,Z), p ( q ) ,  cL(wl) and 

&. must be dz D12(u1). 

e i t h e r  prescr ibed o r  computed f o r  any flow problem governed by t he  

boundary l aye r  equat ions.  I n  the  present  s tudy,  

by imposing a v a l i d  and a unique c o n s t r a i n t  on the  problem. 

c o n s t r a i n t  e s s e n t i a l  t o  make the  equat ion set complete is t he  con- 

serva t ion  of mass flow rate across  any c r o s s  sec t ion  i n  the  flow 

For a unique so lu t ion ,  t h e  pressure  grad ien t  

* is  ca l cu la t ed  dz 

The 

region.  Expressed mathematically, t h i s  leads  t o  the  i n t e g r a l  con- 

t i n u i t y  equat ion;  f u r t h e r  mathematical opera t ions  on t h i s  g ives  t h e  

equat ion which w i l l  be h e r e a f t e r  r e f e r r e d  t o  as t h e  "Equation of 
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Constraint" .  It should be noted here  that. f o r  t h e  isothermal flow 

under study, D12 

hence, i s  a cons t an t .  However, f o r  t he  sake of gene ra l i t y ,  

r e t a ined  i n  the  func t iona l  form. 

i s  assumed t o  be independent of concent ra t ion  and, 

is  12 

2.3.3 Equation of Cons t ra in t  

The mass rate of flow is  conserved ac ross  every axial  c ros s  

sec t ion  of a confined jet  mixing flow, Thus 

R S, 2rrrpvzdr = m f o r  any z 

where 

R 

A mass rate of flow 

ou te r  r a d i u s  of t he  confining p ipe  

D i f f e r e n t i a t i n g  with r e spec t  t o  z ,  Equation (11) becomes 

R a Jo 2mpv d r  = 0 z 

It is  assumed t h a t  the  integrand of t he  above equat ion is an 

in t eg rab le  funct ion of r f o r  each value of 8 ,  and t h a t  t he  p a r t i a l  

e x i s t s  and is  a continuous funct ion Qf r and z d e r i v a t i v e  

i n  the  region of i n t e r e s t .  Then Equation (12) can be w r i t t e n  as 

a (PV,) 
az 
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a(Pvz) 

Subs t i t u t ing  for '7 from t h e  momentum equation (2),  t h e  a x i a l  

p re s  sur  e gradien t  * can be w r i t t e n ,  a f t e r  some s impl i f i ca t ion ,  as dz 

The t e r m  &L i n  t h e  above equat ion can be rep lsced  by t h e  aZ 
d e r i v a t i v e  of Equation (4) . 

Then Equation (14) can be w r i t t e n  as 

r 

(i.5) 

Equation (16) i s  t h e  requi red  "Equation of Constraint"  and a 

unique so lu t ion  of t h e  problem can be obtained a f t e r  p re sc r ib ing  

dr 

appropr ia te  boundary condi t ions .  
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2.3 .4  Boundary Conditions 

1. A t  the i n i t i a l  sect ion z = 0 

v (r,O) = 0 O < r s R  - r 

In t h i s  problem h l ( r ) s  &(r) ,  X3(r) and h4(r)  were chosen 

t o  be constants. 

2 .  A t  the centerl ine r = 0 

v (0,z) = 0 r 

bV 
$ =  0 

0 
a(u, ar” 
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3 ,  A t  t he  w a l l  r = R 

vz (R,z) = 0 

17 (R,z) = 0 r 

- -  - 0  
au,l 
br 

Equations (l), (2), (3 ) ,  (4), (6), (8) aQd (16), toge ther  with 

t h e  boundary cond i t ions  given by the  equation$ (17), (18) and (19) 

complete t h e  formulation of t he  j e t  mixing problem. 

The problem i s  thus governed by a system of coupled non-linear 

Also p a r t i a l  d i f f e r e n t i a l  equat ions which a r e  very  complex t o  so lve .  

several previous i n v e s t i g a t o r s  have repor ted  severe numerical in-  

s t a b i l i t i e s  while  a t tempting t o  sol;ve similar equat ions f o r  f r e e  

j e t  mixing problems, One of t h e  means used i n  t h e  p a s t  t o  overcome 

these  d i f f i c u l t i e s  w a s  t o  t ransform the  problem i n t o  the  von Mises 

plane i n  which t h e  independent v a r i a b l e s  are t h e  stream funct ion  41 

and t h e  axial  d i s t ance  z .  

Indeed, von Mises plane is used t o  so lve  t h e  present  confined 

je t  mixing problem. The advantages and disadvantages of t h i s  t r a n s -  

formation w i l l  be discussed la ter ,  
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2.4 Formulation of Problem in  von Mises Plane (Jt,z) 

2.4.1 Definit ions 

The stream function i s  defined by the following two re la t ions ,  

Thus, 

$ = -pv,r 

The inverse transformation is  given by 

2 r = 2  

The d i f f erent ia l  operators i n  the transform plane becgme 
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The Jacobian of t h e  t ransformation is given by 

Equation (25) shows t h a t  t h e  Jacobian vanishes  a t  t h e  c e n t e r l i n e  

and at t h e  w a l l ,  i * e e Y  t h e  t ransformation i s  s ingular  g t  these  boundar- 

ies, Hence, a t  t h e  c e n t e r l i n e  and a t  t h e  w a l l ,  t h e  mapping is not one- 

to-one, and thereifore, t he  inverse tranefQqnation does not e x i s t  a t  

$ = 0 and $ = Y y  where Y i s  t h e  w a l l  stream funct ion.  However, 

$ = 0 corresponds t o  r = 0, and JI = 1 corresponds t o  r = R. Thus, 

t h i s  information makes i t  poss ib le  t o  t r a n s f e r  uniquely t h e  ca l cu la t ed  

values  of flow parameters from t h e  von Mises plane t o  t h e  physical  

plane i n  t h e  e n t i r e  flow f i e l d .  

The equations and t h e  boundary eondi t iops  descr ibing the  flow 

problem are transformed t o  t h e  von Misqs  plane, using Equations (20) 

through (24). 

2.4,2 Governing D i f f e r e n t i a l  Equations 

Continui ty  Equation 

The con t inu i ty  equation (1) i s  s a t i s f i e d  i d e n t i c a l l y  by the  

d e f i n i t i o n  of t h e  stream funct ion  given by Equation (20) e 

Momentum Equation 

The transformed momentum equat ion corresponding t o  Equation 

(2) is  obtained as 
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Dif fus ion  Equation 

The d i f f u s i o n  equation , Equation (3) , transforms as 

I 

r 

Equation of Cons t ra in t  

h1 
vz aZ 

2 + 

2.4.3 Auxi l ia ry  Expressions 

The a u x i l i a r y  expressions ( 4 ) ,  (6) and (8) remain unchanged, 

bu t  w i l l  be repea ted  here  f o r  t h e  sake of completeness of t h e  flow 

equat ion set. 

Expression f o r  Density 
u). 
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Expression f o r  Viscos i ty  

2 
xipp,  i .-z 2 

i= 1 C x j e i j  

Expression f o r  Binary D i f f u s i v i t y  

D12 

Appropriate mathematical opera t ions  on the  con t inu i ty  equation 

make it poss ib l e  t o  ob ta in  v i n  the  Jr-z plane a s  follows. r 

2.4.4 r Equation fop Determining v 

The boundary condi t ions  given by Equations (17) ,  (18) and (19) 

f o r  the  physical  plane,  must be transformed a l s o  t o  the  von Mises plane.  

2.4.5 Boundary Conditions 

A t  z = 0, the  dependent v a r i a b l e s  are prescr ibed  as func t ions  

of r and can be d i r e c t l y  transformed t o  func t ions  of J r .  

A t  r = 0, t h e  boundary condi t ion  given by Equation (18) shows 

t h a t  t h e  f i r s t  order  r a d i a l  de r iva t ives  of vz and q vanish.  
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These are transformed as follows. 

By d e f i n i t i o n  

or  

I n  view of Equation (18), a t  r = 0, Equation ( 3 4 )  has  t h e  indeterminate 

form 

Z 
av 

pvz aJr 0 
- 0  
- -  

r=O 
( 3 5 )  

Using L'Hospital 's  r u l e ,  Equation (34 )  may be w r i t t e n  as 

a V  

ar 

2 

t he re fo re  implies t h a t  2 3  is  bounded. Similar ly  z a v  
A f i n i t e  2 

ar b, - 
it can be shown t h a t  - and a l l  other  f i r s t  de r iva t ives  with respect  

t o  Jr are bounded a t  r = 0. 
as 

Equations (26 )  and (27) show t h a t  t he  f i r s t  order $ der iva t ives  

2 always appear accompanied by t h e  f a c t o r  r . Hence, t h e  boundary con- 

d i t i o n  a t  t he  c e n t e r l i n e  can be w r i t t e n  as 

L i m  L i m  
= r+O r ( 3 7 )  
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F i n a l l y ,  a t  r = R,  only t h e  p a r t  of t h e  boundary condi t ion  

involving t h e  r a d i a l  de r iva t ive  of a1 needs transformation. 

Again, by d e f i n i t i o n  

o r  

Using Equation (19) i n  the  above equat ion shows t h a t  a t  r = R, 

Equation (39) has t h e  indeterminate fqrm 

0 
0 

r=R 

Using L 'Hospi ta l ' s  r u l e ,  Equation (40) can be w r i t t e n  as 

a2w 
ar2 
w 

L i m  bl L i m  
r+R p r  - = r+R a$ 

can be  est imated as fol lows.  
aV z a2, 

Now, a t  1: = R,  - i s  f i n i t e  and - 
The d i f f u s i o n  equat ion i n  t h e  phys ica l  plane is 

ar2 ar 



26 

Subs t i t u t ion  of Equation (19) y i e l d s  

= o  

r=R 

(43)  

Using Equation (43)  i n  Equation (41) above g ives  the  boundary condi t ion  

a t  t h e  w a l l  as 

L i m  b L  

aJr r-#t p r -  = 0 

o r  

A l l  t he  boundary condi t ions  can now be summarized as follows. 

1. A t  t he  I n i t i a l  Sect ion z = 0 

11 ($9 

1, (lo 
Z 

(44 )  
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I n  t h i s  problem A I ( $ )  ha ($) , h 3 ( $ )  , h4($) were chosen t o  be 

cons tan t ,  

2. A t  t h e  c e n t e r l i n e  r = 0 + ~i = 0 

vr (0,z) = 0 

L i m  aV 

a$ - 0  r + O r - -  2 2  

3 .  A t  the  w a l l  r = R 3 Ji = Y! 

vz (Y,z) = 0 

vr(Y,2) = O 

The w a l l  boundary condi t ion  is  used t q  determine ul a t  the  

wall. But a t  t h e  c e n t e r l i n e ,  ins tead  of using t h e  boundary condi t ion 

t o  determine t h e  so lu t ion  fupct ion,  it is  p re fe r r ed  f o r  higher numerical 

accuracy t o  use t h e  l imi t ing  forms of t h e  governing d i f f e r e n t i a l  equa- 

t i o n s ,  These equat ions may be obtained by s u b s t i t u t i n g  t h e  c e n t e r l i n e  

boundary condi t ions  i n  t h e  genera l  d i f f e r e n t i a l  equations.  
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\ 
2.4.6 Cente r l ine  Equations 

Momentum Equation 

The momentum equation w a s  given by Equation (26) as 

On expanding, Equation (49 )  gives  

From Equation (20), 

pvzr $ = 1 

Using Equation (51) and the  earlier der ived f a c t  t h a t  t h e  f i r s t  

order  d e r i v a t i v e s  wi th  r e spec t  t o  Jt a r e  bounded, Equation (50) 

reduces t o  

n 

z av z 2 aLv z 
av 
aZ - -  - - L g +  p r  pvz T+ 2p 

pvz 3s 

The second t e r m  on the  r i g h t  hand side of t h i s  equat ion i s  

examined i n  t h e  following manner 



Now by L 'Hospi ta l ' s  r u l e  

2 L i m  a vZ L i m  - 
r+O - = r+O - 

z 
aV 

ar 
ar r 

Using Equations (18) and (55) i n  Equation (54) g ives  

Therefore ,  Equation (52) reduces t o  

29 

(53) 

(55) 

Di f fus ion  Equation 

S imi la r ly ,  a t  t he  c e n t e r l i n e ,  t h e  d i f f u s i o n  Equation (27) 

reduces t o  
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The flow Equations (26) through (32) along with t h e  boundary 

condi t ions  (46) through (48) and the  c e n t e r l i n e  Equations (57) and 

(58) complete t h e  formulation of t he  problem i n  the  von Mises plane 

f o r  a unique so lu t ion .  

One po in t  is of major concern a t  t h i s  s tage ,  s ince  the  problem 

is  solved by f i n i t e  d i f f e rence  methods. The boundary condi t ion  a t  

z = 0 determines t h e  mass f l u x  of t h e  outer  and inner streams. As 

the  r a t i o  of t he  m a s s  f l uxes  of t h e  outer  t o  t h e  inner streams 

approaches t h e  t o t a l  number of s t e p s  of unizorm s ize  along the  trans- 

ve r se  d i r e c t i o n ,  t h e  number of g r i d  po in t s  represent ing  the  inner  

stream decreases.  The la t te r  number becomes undesirably small f o r  

c e r t a i n  cases  with l a rge  mass f l u x  r a t i o s  inves t iga ted  i n  the  pre-  

sen t  work. Hence, t o  obta in  a proper f i n i t e  d i f f e rence  representa-  

t i o n  of t h e  inner s t ream fo r  these  l a rge  w a g s  f l u x  r a t i o s  without 

unreasonably increas ing  t h e  number of s t e p s  i n  t h e  Q d i r e c t i o n ,  

a s u i t a b l e  t ransformation is used t o  s t r e t c h  t h e  $ coordinate  

i n  t h e  region of t he  inner  stream. This  t ransformation,  termed 

the  "cp transformation" and t h e  corresponding transformed equat ions 

and boundary condi t ions  a r e  presented nex t ,  
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2.5 Formulation of Problem i n  cp-Transform Plane (cp,z) 

The cp-transform i s  used t o  obta in  a proper f i n i t e  d i f f e rence  

representa t ion  of t he  inner stream f o r  jet mixing systems with la rge  

r a t i o s  of t he  mass flow rates of t h e  outer  t o  t h e  inner streams. 

Bas ica l ly ,  t h i s  involves  a "stretching" of t h e  $-coordinate i n  the  

region of t h e  inner stream. To achieve the  des i red  purpose, a 

simple transformation i n  t h e  form of a square-root funct ion is  used. 

2.5.1 Def in i t i on  of cp-Transformation 

c P =  a$' 'Q, (59) 

where Q, = 1 o r  2 and a is a s u i t a b l y  se l ec t ed  cons tan t .  For the  

cases  inves t iga ted ,  a i s  chosen t o  be equal t o  un i ty  and Q, i s  

chosen t o  be 2. These are t h e  va lues  used i n  fu r the r  d i scuss ian  of 

t he  transformation. Since t h e  z-coordinate remains unaffected by 

t h i s  transformation, only t h e  JI der iva t ives  need t o  be transformed 

from $-z t o  t h e  'p-z plane. 

* 
The d e t a i l s  of t h i s  transformation were obtained by M i s s  U r m i l a  

Agarwal, Research Fellow i n  t h e  Mechanical and Aerospace Engineering 
Department, I l l i n o i s  I n s t i t u t e  of Technology. 
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Using t h e  d e f i n i t i o n  given by Equation (59), Equations (60) and (61) 

may be w r i t t e n  as 

The inverse  9-transformation is  defined by 

The Jacobian of t h e  t ransformation is given by 

Clear ly ,  J '  becomes i n f i n i t e  a t  cp = 0, i.e., a t  t h e  c e n t e r l i n e ,  

so t h a t  s p e c i a l  ca re  mus t  be taken while using t h e  t ransformation 

a t  t h e  c e n t e r l i n e .  E s s e n t i a l l y ,  t h i s  c o n s i s t s  of using t h e  informa- 

t i o n  t h a t  = 0 occurs  a t  r = 0; also a t  t he  c e n t e r l i n e ,  L 'Hospi ta l ' s  

r u l e  is used i n  eva lua t ing  the  t ransverse  de r iva t ives .  

The equat ions and the  boundary condi t ions  descr ib ing  t h e  problem 

i n  t h e  Jr-z plane are next  transformed t o  t h e  cp-z plane.  
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2 .5 .2  Governing Dif ferent ia l  Equations 

Momentum Equation 

Diffusion Equation 

Equation of  Constraint 

Equation (68) may a l so  be derived d irec t ly  from Equation (11) of the 

physical plane, This derivation is shown in Appendix A .  
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Equation f o r  Determining vr 

2.5.3 Auxil iary Expressions 

The a u x i l i a r y  expressions ( 2 8 ) ,  (29) and (30) fo r  p,  p, 

D12 

repeated here  fo r  t h e  sake of completeness of t he  flow equat ion set. 

respec t ive ly ,  remain unaffected by the  t ransformation bu t  are 

Expression f o r  Density 

a1 

Expression f o r  Viscos i ty  

xi%, i w =  

j-1 

Expression f o r  Binary D i f f u s i v i t y  

1/2 
M i  + Ma 

BT3'2 [ MI% ] 
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2 
3V 

2.5.4 Boundary Conditions 

= o  

A t  z = 0, Equation (46) g ives  the  boundary condi t ions as 

The only boundary condi t ion t h a t  remains t o  be considered i s  - a+ 

prescr ibed func t ions  of +. Since t h e  cp-transformation def ines  a 

+=y 

one-to-one correspondence between + and cp; t he  va r i ab le s  vz 

and u ) ~  can be r e a d i l y  computed as funct ions of c p .  

A t  ‘p = 0, the  f i r s t  order  +-der ivat ives  w e r e  shown t o  be 

bounded. The corresponding transformed boundary condi t ion becomes 

= a bounded quant i ty  (73) 
cp=O 

Equation (59) shows t h a t  - is  unbounded, hence 4 cp=o 
Z 

av - must necessa r i ly  vanish,  i.e., 

Similar ly ,  

= o  

(74) 

(75) 
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Since h i  is  f i n i t e ,  
d +  i 

i cp=Q 

= o  bl 

6j cpr@ 
The boundary condi t ions  i n  the  'p-z plane are presented below, 

1. A t  t he  i n i t i a l  s ec t ion  z = 0 

I n  t h i s  problem h l ( ~ ) ,  h2( 'p ) ,  h3('p) ,  A,+($ were chosen t o  be 

cons t an t s ,  

2.  A t  t he  c e n t e r l i n e  (D = 0 

v ( 0 , z )  = 0 r (799) 



av  ' 
z /  = o  

'p=O 
a,! 
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(79b) 

3. A t  t he  w a l l  u, = # 

vz(@,z)  = 0 

vr(@,z) = 0 

It only remains t o  transform t h e  c e n t e r l i n e  equat ions t o  t h e  corre-  

sponding equat ions i n  the  9-2 plane. 

2.5.5 Center l ine  Equations 

Since the  cp-transformation has  an unbounded Jacobian a t  

(p = 0, s u i t a b l e  mathematical opera t ions  are necessary fo r  transforming 

t h e  $-der ivat ive appearing i n  t h e  c e n t e r l i n e  Equations (57) and (58). 

By d e f i n i t i o n  
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The right-hang member of the above equation has the indeterminate 

form - at  t h e  center l ine ,  i r e . ,  a t  tp = 0. Using L'Hospital's rule  0 
0 

Using Equation (59) with a = 1, Equation (82) becomes 

Similarly , 

Therefore, the centerl ine equations i n  the 9-2 plane are obtained 

i n  the following f o r m .  
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Momentum Equation 

Dif fus ion  Equat ion 

aZ = PD12 - a(p2 

Thus, t h e  flow problem i s  completely represented by Equations 

(66) through (72) ( together  with Equations (85) and (86) f o r  t h e  

cen te r l ine )  and the  boundary condi t ions  (78) through (80) e The numer- 

i c a l  method employed f o r  t h e  so lu t ion  of t h i s  system i s  presented next ,  



CHAPTER 3 

NUMERICAL METHOD OF SOLUTION 

3.1 In t roduct ion  

A t  p resent ,  the s o l u t i o n  of t h e  parabol ic  system of coupled 

non-linear p a r t i a l  d i f f e r e n t i a l  equat ions (PDEs) which desc r ibe  t h e  

confined j e t  mixing problem, i s  not  poss ib l e  by a n a l y t i c a l  methods, 

A forward marching numerical technique i s  used t o  so lve  t h e  present  

problem governed by Equations (66) through (69), (85), ( 8 6 ) ,  to -  

gether  wi th  t h e  a u x i l i a r y  equat ions and the  boundary condi t ions  

s t a t e d  i n  t h e  previous chapter., S i m i l a r  procedures have been em- 

ployed by seve ra l  authors  (References 13 and 30) i n  numerical s t u d i e s  

of t h e  boundary l aye r  equat ions using semi-expl ic i t  methods, 

an a l l - e x p l i c i t  numerical method is  used i n  t h e  present  study. Rea- 

sons f o r  s e l e c t i o n  of t h e  a l l - e x p l i c i t  method are explained i n  

Appendix B ,  

However, 

I n  order  t o  use f i n i t e  d i f f e rence  techniques,  f i r s t  it i s  

necessary t o  e s t a b l i s h  a system of g r i d  po in t s  i n  the  e n t i r e  flow 

f i e l d .  

used t o  so lve  t h e  problem are shown i n  F ig .  2. The values  of t h e  

dependent v a r i a b l e s  correspond t o  these  d i s c r e t e  g r i d  po in t s  which 

are designated by appropr ia te  subsc r ip t s .  

and boundary condi t ions  of t h e  flow problem are replaced by t h e i r  cor-  

responding f i n i t e  d i f f e rence  formsI For t h e  t r ansve r se  de r iva t ives ,  

c e n t r a l  d i f f e rences  are used i n  t h e  i n t e r i o r  of t h e  duct  and backward 

The d i s c r e t i z e d  rec tangular  g r i d  and the  coord ina te  system 

The d i f f e r e n t i a l  equat ions 

40 
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d i f f e rences  are used at t h e  duct w a l l ,  Forward d i f f e rences  are used 

f o r  t he  a x i a l  de r iva t ives  everywhere except i n  t h e  con t inu i ty  equation; 

t h e  reason f o r  t h i s  w i l l  be  explained later. 

The s u b s t i t u t i o n  of t hese  f i n i t e  d i f f e rence  approximations 

(FDAS) leads t o  l i n e a r  e x p l i c i t  f i n i t e  d i f f e rence  equations (FDES) 

t h a t  are s t a b l e  under c e r t a i n  condi t ions.  These s t a b i l i t y  condi t ions 

22 are obtained by using the  c r i t e r i o n  which was developed by Karplus 

based on an electric c i r c u i t  theory. 

fo r  non-negative axial v e l o c i t i e s .  

These condi t ions are r e a l i z a b l e  

Karplus' c r i t e r i o n  has  been suc- 

c e s s f u l l y  used by Wu31 f o r  a two-dimensional laminar incompressible 

flow problem, by Schuyler and Torda f o r  a two-dimensional laminar 32 

c omp res s i b  le 

f o r  confined 

s t a b i l i t y  of 

method23 and 

18 flow problem, and by F e j e r  e t  a l l 7  and Agarwal and Torda 

coax ia l  axisymmetric laminar jet  mixing,, The numerical 

t h e  present  problem is a l s o  s tudied  by using von Neumann's 

t h e  corresponding s t a b i l i t y  condi t ions  are compared with 

those obtained by Karplus' method. 

methods, and the  de r iva t ion  of t h e  s t a b i l i t y  condi t ions f o r  t he  flow 

problem using both these  methods are presented i n  Appendix C. 

s t a b i l i t y ,  consis tency and convergence must a l s o  be s a t i s f i e d  so t h a t  

t he  numerical so lu t ion  is meaningful, For t h e  present  problem, con- 

s i s t ency  and convergence are shown t o  be ensured in'Appendix B. 

The von Neumann and t h e  Karplus 

Besides 

The FDEs corresponding t o  t h e  flow equat ions and t h e  boundary 

condi t ions are now presented. The s t a b i l i t y  condi t ions  f o r  t he  b a s i c  

equations are a l s o  given. 
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3.2 

3.2.1 Governing Difference Equations 

F i n i t e  Difference Equations and S t a b i l i t y  Conditions 

Momentum Equation 

Using the  above scheme, Equation (66) can be w r i t t e n  a t  t h e  

genera l  g r i d  poin t  (m,n) as  

1 vz(m+l,n) - 2vz(m,n) + vz(m-l,n) 
2 &  

[l.lpvzr [dp]‘] m>n [ n(p2 

where 
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Solving e x p l i c i t l y  f o r  vz(m,n+l) , Equation (87a) y i e l d s  

v-(m,n+l) = vz(m9n) -F 
a 

AZ 

1 ! - 2vz(m,n) + vz(m-1,n) 

The numerical s t a b i l i t y  condi t ions f o r  Equation (88) are 

der ived i n  Appendix B using Karplus' and von Neumann's methods., 

These condi t ions are 
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1. 

2. 

Acp 
thus se lec ted  from the  required reso lu t ion  and the  

accuracy of t he  flow problem. 

is not  l imited from s t a b i l i t y  considerat ions and i s  

AZ < 
1 1’ A C ~ ~  1 1  

2v 2 2 
- 
- vz[$l m,n 

Center l ine  Momentum Equation 

Equation (85) is  only v a l i d  a t  t h e  c e n t e r l i n e  and can be 

w r i t t e n  as 

(90) 
1 vz(mt.l,n) - 2v Z (m,n) + vz(m-l,n) c AT2 

+ IJ’m,n 

Here, m = 1, and from the assumption of a x i a l  symmetry, 

Subs t i tu t ing  t h i s  value and solving vz(mtl,n) = vz(m-1,n). 

e x p l i c i t l y  f o r  vz(m,n+l) , Equation (90) g i e l d s  

vz(m,n+l) = vz(m,n) 

+ AZ 
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The s t a b i l i t y  condi t ions f o r  t h i s  equation are derived i n  

Appendix B and are 

1. no r e s t r i c t i o n  on Ikp 

It may be  shown t h a t  t h e  c e n t e r l i n e  momentum equation is 

uncondi t ional ly  s t a b l e  i f  t he  exponent i n  t h e  ?-transformation is  

uni ty .  

For a given value of m, condi t ion (89) is  more r e s t r i c t i v e  

than condi t ion (92) and, hence, t h e  s t e p  s i z e  computed from condi t ion 

(89) was used throughout t h e  flow f i e l d .  Also, one may be concerned 

about t h e  e f f e c t  on t h e  s t a b i l i t y  c r i t e r i o n  of t he  pressure  grad ien t  

t e r m  appearing i n  both  Equations (88) and (91). Since t h e  momentum 

equation is  used t o  compute vz(m,n+l) by an e x p l i c i t  scheme, t he  

va lues  of a l l  o ther  q u a n t i t i e s  appearing i n  Equations (88) or  (91) 

are e i t h e r  spec i f i ed  o r  computed p r i o r  t o  t h i s  s tage .  I n  p a r t i c u l a r ,  

* dz lm,n 

hence, cannot con t r ibu te  t o  i n s t a b i l i t y ,  

appearing i n  Equations (88) and (91) i s  a known quant i ty  and, 

Diffusion Equation 

Using t h e  e x p l i c i t  scheme, Equation (67) can be w r i t t e n  a t  t h e  

general  g r i d  po in t  (m,n) as 
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where 

Solving e x p l i c i t l y  for ul (m,n+l), Equation (93) y i e l d s  
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The numerical s t a b i l i t y  condi t ions,  obtained i n  Appendix B fo r  

Equation ( 9 4 )  are 

1, no r e s t r i c t i o n  on acp 

Acp2 (95) 

Center l ine  Dif fus ion  Equation 

Equation ( 8 6 )  is v a l i d  only a t  t he  c e n t e r l i n e  and can be 

w r i t t e n  as 

Here, m = 1 and from t h e  assumption of a x i a l  symmetry, ul(mtl ,n) = 

u1 (m-1,n) . Subs t i tu t ing  t h i s  value and solving expl ic i t ly  f o r  ul(m,n+l),  

Equation ( 9 6 )  y i e l d s  

The s t a b i l i t y  condi t ions fo r  t h i s  equat ion are derived i n  Appendix B. 

These condi t ions  are 
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1, no r e s t r i c t i o n  on @ 

I f  t he  exponent i n  the  q-transformation is uni ty ,  it can be 

shown t h a t  the  c e n t e r l i n e  d i f fus ion  equation i s  uncondi t ional ly  s t ab le .  

For a given value of m, condi t ion (95) is more r e s t r i c t i v e  than 

condi t ion (98) and, hence, t he  s t e p  s i z e  computed from condi t ion (95) 

i s  used throughout t he  flow f i e l d .  

Equation of Constraint  

Using the  e x p l i c i t  scheme, Equation (68) can be w r i t t e n  as 

I 

1 
dz M 

I m,n 

M 

where 
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It should be noted here  t h a t  wl(m,n+l) i s  known a t  t h i s  s t age  for  

a l l  m,  

1 vz(mtl,n) .. 2vz(m,n) + vz(m-l,n) 

m, n n(p2 I 

The r i g h t  hand s i d e  of Equation (99) has  no terms involving the 

pressure p. Therefore,  Equation (99) is always s t a b l e .  
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Equation f o r  Determining v r 

Equation (69) is  not of t h e  appropr ia te  form f o r  ca l cu la t ing  the  

r a d i a l  v e l o c i t y  vr s ince  no a x i a l  de r iva t ive  of v appears i n  t h i s  

equation. Hence, s u i t a b l e  f i n i t e  d i f f e rence  forms of Equation (69) 

are necessary for  t h e  e x p l i c i t  scheme used. The form se l ec t ed  fo r  use 

w a s  based on an e r r o r  ana lys i s .  

con t inu i ty  equation i s  shown i n  Appendix A (Equation A-26). 

r 

The development of t h i s  form of t h e  

Equation (A-26), used for  determining v is w r i t t e n  a t  t he  r '  
1 

f i c t i t i o u s  po in t s  (m + 5 .,n + 1) ins tead  of (m,n + 1) i n  order t o  

r e t a i n  the  use  of c e n t r a l  d i f f e rences  f o r  t h e  t ransverse  de r iva t ives  

and, thus,  maintain t h e  cons i s t en t  accuracy of t h e  f i n i t e  d i f f e rence  

scheme. This  enables  t h e  determination of v f o r  a l l  va lues  of m, 

which would not be poss ib le  i f  t he  t ransverse  de r iva t ives  were w r i t t e n  

a t  the regular  g r i d  po in t s  (m,n + 1). The a x i a l  de r iva t ives  i n  t h e  

con t inu i ty  equation are evaluated by using backward d i f fe rences ,  s ince  

forward d i f f e rences  would not y i e l d  an e x p l i c i t  representa t ion  a t  t h i s  

stage., Thus 

r 

t h a t  i s  , 

vn(mtl,n+l) - vn(m,n+l) 
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S i m i  lar  l y  

t h a t  i s ,  

1 221 av 
aZ m+l,n+l m,n+l J 

Forms similar t o  t h e  above FDAs may be derived fo r  - $ and 

I Subs t i t u t ing  these  FDAs i n t o  Equation (A-26) y i e l d s  aP 
a Z  
- 

vr(&l,n+l) = 

P V  r [ r lm,n+l  

+ - 1 [ql(m,n+l) + %(m,n+l) + Tlz(m+l,n+l) ] A m  2 
2 

(108a) 

1 
D (m, n+l) 

where 

2 
2 r’(m+l,n+l> - r (m,n+l) 

2 A r m  5 (108b) 
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D(m,n+l) = Pr [ 'm+l,n+, 

1 - vz(m,n+l) 
ACP 

P(mtl,n+l) - P(m,n+l) 
OFP 

+['v 33 [ 
d* m+l,n+I 

1 vz(mtl,n+l) - vz(m,n+l) *I hp [ r d~ m,n+l 
?j',(m,n+l) = p v r 

P(m,n+l) - P(m,n) 
AZ - vz(myn+l) 

It can easily be shown that Equation (108) is unconditionally stable. 
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3.2.2 Inverse Transformation 

Using the explicit scheme, Equation ( 6 4 )  for m = 2,3,. .,M 

can be written as 

M 
# 

2 2 1 [~ lm,n r (m,n) = r (m-1,n) + 4 
m=2 

For m = 1, 

r(1,n) = 0 

and for m = M + 1 

r(M + 1,n) = R 

( 113a) 

(113b) 

3.2.3 Auxiliary Expressions 

The auxiliary expressions (70) , (71) and (72) , when transformed 
into FDEs, have the following form. 

Expression for Density 
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Expression fo r  Viscos i ty  

L x .(m,n) mi, 
j=1 J 

Expression f o r  Binary D i f f u s i v i t y  

It may be r e c a l l e d  t h a t  i n  t h i s  p a r t i c u l a r  problem, D,, is 

assumed t o  be cons tan t ,  

It may be shown t h a t  Equations ( 1 1 4 ) ,  (115) and (116) are 

uncondi t ional ly  s t a b l e ,  

3.2.4 Boundary Conditions 

The boundary condi t ions,  given by Equations (78) through (80), 

have the  following f i n i t e  d i f f e rence  representa t ions .  

1. A t  n = 1 

It was mentioned i n  Chapter 2 t h a t  t he  boundary condi t ions 

of t he  (p-z plane, hl ((p), & ( c p ) ,  h3(cp) and h4((p), a r e  chosen t o  be 
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constants  fo r  t h i s  p a r t i c u l a r  problem, These constants  a r e  U,, 

u,, un i ty  and zero respec t ive ly .  

vr(m,l) = 0 

2. A t  m = 1 fo r  a l l  n > 0 

vr(m,l) = 0 

vz(mtl,n) - v (m-1,n) 
z = o  where m = 1 

2 4  

(117a) 

(117b) 

( 1 1 7 4  

(118a) 

(118b) 

( 118c) 
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3. A t  m = M + 1  f o r  a l l  n > 0 

vr(M+l,n) = 0 

vZ(M+l,n) = 0 

(119a) 

(119b) 

(119c) 

Thus, t h e  governing equat ions and boundary condi t ions of t h e  

flow problem have been transformed t o  f i n i t e  d i f f e rence  equations 

using t h e  e x p l i c i t  scheme. 

(88), (91), (94), (97), (99), (108) and (112) through (119) were pro- 

grammed fo r  t h e  IBM 360/40 computer. 

f i n i t e  d i f f e rence  equations w a s  ensured by s a t i s f y i n g  condi t ions (89) 

and (95). 

I n  order  t o  solve t h e  problem, Equations 

The numerical s t a b i l i t y  of these  

3.3 Sequence of Operations f o r  Solut ion of FDEs 

1. The set of flow parameters U,, U,, pP,,, pp ,z ,  R,, R. 

are spec i f i ed  and are assigned f o r  t h e  i n i t i a l  s ec t ion  of a g r i d  sys- 

t e m  i n  t h e  r-z plane. 

2. A t  this i n i t i a l  sec t ion ,  t h e  values  of p,, pz, D,, are 

e i t h e r  spec i f ied ,  o r  are computed from Equations (114), (115) and (116) 
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us ing-preser ibdd  values  of M,, Ma, P , P , T ,  etc. 
PI1  PY2 

3. I! is  evaluated using Equation (21) wi th  r = R. 

@ is then determined from Equation (59). Subsequently, AT is  

G obtained as - M e  

4 .  Az is  computed a t  n = 1 f o r  a l l  m from the  

s t a b i l i t y  condi t ions (89) and (95). The most r e s t r i c t i v e  of a l l  

these  values  i s  used i n  f u r t h e r  computations. 

5. ul(m,n+l) is evaluated using Equation (97) f o r  m = 1, 

Equation (94) f o r  m e 2,3, . . ,M and the  boundary condi t ion (118c) 

f o r  m = M + 1. 

is computed using Equation (99). 
mYn 

7.  vz(m,n+l) i s  determined using Equation (91) fo r  m = 1, 

Equation (88) f o r  m = 2,3..,M and the  boundary condi t ion (118b) 

f o r  m = M + 1. 

8. r(m,n+l) is determined using Equation (112) f o r  m = 2,3, 

*.,M and the  boundary condi t ions  (113a) and (113b) f o r  m = 1 and 

m = M + 1 respec t ive ly .  

9, vr(m,n+l) i s  computed using the  boundary condi t ion (118a) 

f o r  m = 1, Equation (108) f o r  m = 2,3,..,M, and t h e  boundary con- 

d i t i o n  (119a) f o r  m = M + 1. 

10. The value of n i s  incremented by un i ty  and s t e p s  5 

through 9 are repeated u n t i l  a f ixed  d i s t ance  

the  s t a b i l i t y  condi t ions (89) and (95) are checked. 

z i s  reached where 
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11. Steps 5 through 10 are repea ted  u n t i l  t h e  flow i s  f u l l y  

developed, 

12. The va lues  of t h e  f u l l y  developed flow parameters as 

obtained from t h e  above numerical procedure are compared with t h e i r  

va lues  computed t h e o r e t i c a l l y .  

This  sequence of opera t ions  is summarized i n  the  flow diagram 

presented i n  F igure  3 .  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 In t roduct ion  

A d e t a i l e d  parametric s tudy of confined jet  mixing w a s  c a r r i e d  

out  using t h e  f i n i t e  d i f f e rence  method developed i n  t h e  last  chapter .  

The s ign i f i cance  of t h e  r e s u l t s  of t h i s  study depends, of course,  on 

the  v a l i d i t y  of t he  mathematical model used t o  formulate the  physical  

flow problem. Before present ing  t h e  r e s u l t s  obtained,  it i s  necessary 

t o  g ive  some explanat ion on t h e  use  of boundary layer  equat ions de- 

s c r ib ing  t h e  flow system considered. A b r i e f  d i scuss ion  i s  a l s o  pre- 

sented f o r  some po in t s  of s p e c i a l  i n t e r e s t  i n  t h e  von Mises t r a n s f o r -  

mation as w e l l  as t h e  y-transformation. 

mention the  poss ib l e  checks used t o  v a l i d a t e  t h e  present  r e s u l t s  which 

are next discussed,  

F i n a l l y ,  it i s  important t o  

4.2 On t h e  U s e  of  Boundary Layer Equations 

Boundary l aye r  equat ions are known t o  be  v a l i d  f o r  high Reynolds 

numbers i n  t h e  reg ion  adjoining t h e  w a l l .  These equat ions have been 

used f o r  t h e  e n t i r e  flow region of t h e  confining pipe and j u s t i f i c a t i o n  

61 
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of t h e i r  use i s  discussed here.  The main assumptions i n  obtaining 

these equations are 

1. 

2. 

3 .  

As f a r  as 

has - a 2 V  z 

a Z  

v << vz r 

t h e  a x i a l  momentum equation is  concerned, only t h e  t e r m  

been neglected under these assumptions. I n  t h e  confined 

j e t  mixing, s u f f i c i e n t l y  downstream from the  j e t  e x i t  sec t ion ,  t he  

boundary layer  assumptions hold good s ince  t h e  flow c h a r a c t e r i s t i c s  

t he re  are similar t o  those of t he  developing flow i n  t h e  entrance 

region of a pipe.  I n  t h i s  region,  t h e  a x i a l  v e l o c i t y  vz ( r , z )  i s  

a smooth funct ion and s a t i s f i e s  2 c< - ; a l so  v << v 

However, i n  t h e  region c l o s e  t o  the je t  e x i t  sec t ion ,  t he  assumption 

a 2 V  z a 2 V  z 
r z aZ ar 

v 

vz(r ,z)  i n  t h i s  region is  such t h a t  - 
seen from t h e  f a c t  t h a t  a considerable  t r ansve r se  grad ien t  of 

<<vz may not be s a t i s f a c t o r i l y  j u s t i f i e d ,  but  t he  na ture  of r 
a2v z . This  can be z 

a2v 
2 <<-2 

az ar 
v z 

e x i s t s  near t h e  je t  e x i t .  Therefore,  t he  momentum exchange between 

the  two streams i s  l a rge  i n  t h i s  region. Fur ther ,  for  t h e  present  
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problem, t h e  flow ou t s ide  t h e  boundary layer is viscous a l s o  and hence 

t h e  boundary l aye r  equations may st i l l  be used f o r  s u f f i c i e n t l y  l a r g e  

Reynolds numbers. A similar argument holds  good f o r  neglect ing t h e  

t e r m  - i n  t h e  d i f f u s i o n  equation. The u s e  of t h e  boundary layer  

equations w a s  a l s o  supported by t h e  success wi th  which s e v e r a l  inves- 

az2 

t i g a t o r s  (References 8, 12, 13 and 14) appl ied them t o  t h e  study of 

unconfined mixing. I n  p a r t i c u l a r ,  Weinstein and Todd13 computed t h e  

r a d i a l  and axial  d e r i v a t i v e s  of vz and uI and showed t h a t  t he  boun- 

dary layer  assumptions are  v a l i d  f o r  t h e  unconfined je t  mixing system. 

4.3 On t h e  Use of von Mises and t h e  cp Trans format ions  

Several  r e sea rche r s  have analyzed unconfined je t  mixing problems 

using t h e  von Mises transformation i n  order t o  avoid t h e  severe numeri- 

ca l  i n s t a b i l i t i e s  encountered i n  t h e  phys ica l  plane.  These i n s t a b i l i -  

t ies  become f u r t h e r  enhanced i n  t h e  case of confined j e t  mixing because 

of t h e  boundary cond i t ions  a t  t h e  confining w a l l .  The numerical s t a b i l i -  

t y  ana lys i s  of t h e  present  flow problem i n  the  physical  plane imposes 

an upper l i m i t  on t h e  s t e p  s i z e  A r ,  i n  t h e  r d i r e c t i o n ;  f u r t h e r ,  t h e  

maximum s t e p  s i z e  Az, i n  t h e  z d i r e c t i o n ,  is l imited by a funct ion 

of A r  . These s t a b i l i t y  condi t ions are very s t r i n g e n t .  On t h e  o the r  

hand, i n  t h e  von Mises plane,  t h e  s t e p  s i z e  A $  i n  t h e  t r ansve r se  

2 
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d i r e c t i o n  has  no s t a b i l i t y  r e s t r i c t i o n ,  although AZ is  s t i l l  r e s t r i c t e d  

by a funct ion of A$ The von Mises transformation has been used i n  

t h e  present  ana lys i s  a l s o ,  and c e r t a i n  d i f f i c u l t i e s  which are associ-  

ated with t h i s  transformation are mentioned hoTe. 

2 

The order of accuracy of t h e  f i n i t e  d i f f e r e n c e  method i s  no 

longer maintained uniform throughout t h e  flow f i e l d  s ince  i n  t h e  in- 

t e r i o r  of t h e  flow f i e l d ,  c e n t r a l  d i f f e rences  are used f o r  t h e  t r ans -  

verse de r iva t ives ,  b u t  e i t h e r  forward o r  backward d i f f e rences  are used 

a t  t h e  boundaries e The l imi t ing  d i f f e r e n t i a l  equations a t  t h e  cen te r -  

l i n e  con ta in  f i r s t  order t r ansve r se  d e r i v a t i v e s  which have t o  be re- 

presented by forward d i f f e rences .  Since the  t r ansve r se  d e r i v a t i v e  of 

q 

evaluate  (ul a t  this  boundary, 

i s  prescr ibed a t  t h e  w a l l ,  backward d i f f e rences  have t o  b e  used t o  

The r e s u l t s  are des i r ed  i n  t h e  physical  plane,  t he re fo re  

a d d i t i o n a l  c a l c u l a t i o n s  are necessary t o  transform t h e  obtained values  

of t he  flow parameters back t o  the  physical  plane. 

d i t i o n a l  computer t i m e .  Also, use of t h e  vonMises  transformation be- 

comes imprac t i ca l  as the r a t i o  of m a s s  f l u x  of ou te r  t o  inner streams 

increases ,  r e s u l t i n g  i n  a decrease i n  t h e  number of g r i d  p o i n t s  repre- 

s en t ing  t h e  inner  stream, The latter number becomes undesirably s m a l l  

This  r e q u i r e s  ad- 
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f o r  c e r t a i n  cases, with la rge  mass f l u x  r a t i o s ,  inves t iga ted  i n  t h e  

present  work. Hence, t o  obta in  a proper f i n i t e  d i f f e rence  representa-  

t i o n  of t h e  inner  stream fo r  these  l a rge  mass f l u x  r a t i o s  without un- 

reasonably increasing t h e  number of s t e p s  i n  t h e  t$ d i r ec t ion ,  t he  

Y-transformation was used t o  s t r e t c h  the  

of t he  inner stream. 

11( coordinate  i n  t h e  region 

I n  addi t ion  t o  represent ing  t h e  inner  stream s u i t a b l y  the  

cp-transformation simultaneously removes t h e  inconsis tency i n  t h e  order  

of accuracy of t h e  f i n i t e  d i f f e rence  method a t  t h e  c e n t e r l i n e  of t h e  

von Mises plane s ince  the  flow problem i n  t h e  

symmetric, The s t a b i l i t y  condi t ions  are comparable t o  those i n  t h e  

von H i s e s  plane,  It is  noted here  t h a t  t h e  mathematical model of t he  

flow problem i n  the  von Mises plane may be considered as a s p e c i a l  case 

of t he  model i n  t h e  cp-z plane, Hence, t he  complete f i n i t e  d i f f e rence  

formulation of t h e  problem was presented only i n  t h e  

cp-z plane i s  axi- 

cp-z plane,  

4 , 4  Val ida t ion  of t he  Resul t s  

The ana lys t s  developed i s  used t o  inves t iga t e  coax ia l  confined 

laminar mixing of jets with g r e a t l y  d i f f e r e n t  d e n s i t i e s  and v a r i a b l e  

phys ica l  and t r anspor t  p rope r t i e s ,  

authors ,  t h i s  s p e c i f i c  problem has not  been t r e a t e d  by o the r s ,  e i t h e r  

To t h e  b e s t  knowledge of t h e  
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experimentally o r  a n a l y t i c a l l y .  Therefore,  eva lua t ion  of t h e  r e s u l t s  

by d i r e c t  comparison is not  poss ib le  and an i n d i r e c t  method i s  used 

t o  assess r e l i a n c e  on the  r e s u l t s .  

Extensive a n a l y t i c a l  and experimental  r e s u l t s  are ava i l ab le  f o r  

t he  entrance flow i n  a pipe.  

t he  classical entrance flow problem using t h e  boundary layer  equat ions 

i n  the  phys ica l  plane.  

Lavan and Fejer33 using the  Navier Stokes equat ions,  t he  maximum devia- 

t i o n  observed is 3.5 percent  i n  the  reg ion  c l o s e  t o  the  jet  e x i t  sec- 

t i o n  and the  devia t ion  decreases  wi th  d i s t ance  downstream, The clas- 

A computer program w a s  w r i t t e n  t o  so lve  

Comparing t h e  r e s u l t s  with those obtained by 

s i c a l  entrance flow problem was solved a l s o  i n  the  vonMises  plane 

using the  present  program. Comparison of t hese  r e s u l t s  with the  

so lu t ion  of t h e  Navier Stokes equat ions shows a maximum devia t ion  

of almost 8 percent  f o r  t h e  f u l l y  developed flow. This  comparison 

gives  an estimate of t he  expected accuracy of t h e  r e s u l t s  obtained 

by solving the  problem i n  t h e  von Mises plane,  

devia t ion  w a s  observed between the  so lu t ions  f o r  t h e  confined je t  m i x -  

ing problem i n  the  y-z 

33 

Fur ther ,  only a small  

plane and those i n  t h e  von Mises plane.  

As a p a r t i a l  check on t h e  r e s u l t s  obtained by the  present  method, 

t he  f u l l y  developed va lues  of t he  flow parameters, namely, vz ( r , z )  , 
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w1 ( r , z )  and Lh? are compared wi th  the  corresponding asymptotic 

va lues  t h a t  were obtained independently from simple t h e o r e t i c a l  con- 

dz ’ 

s i d e r a t i o n s ,  

s ec t ion  and t h e  parabol ic  v e l o c i t y  p r o f i l e s  i n  t h e  f u l l y  developed 

From t h e  invariance of mass and volume flow rates a t  any 

flow, vz(r ,z)  and q ( r , z )  a t  t h e  end s e c t i o n  are expressed i n  

terms of t h e  i n l e t  parameters,  namely, v e l o c i t i e s ,  d e n s i t i e s  and 

cross -sec t iona l  areas. The a x i a l  p ressure  g rad ien t  5k i s  evaluated dz 

a l s o  from the  momentum equat ion a f t e r  s u b s t i t u t i n g  appropr ia te  va lues  

f o r  t he  f u l l y  developed flow. The agreement with these  asymptotic 

va lues  g ives  f u r t h e r  r e l i a n c e  on t h e  numerical  r e s u l t s .  

4.5 Discussion of Resu l t s  

The present  method is  used t o  s tudy t h e  mixing and developing 

phenomena of a laminar c i r c u l a r  j e t  i n  a confined coax ia l  flow. Re-  

s u l t s  are obtained i n  t h e  form of v e l o c i t y  and mass f r a c t i o n  f i e l d s  

and the  e f f e c t s  of t h e  following parameters on t h e  mixing are s tudied.  

u2 1. Veloc i ty  Ra t io  - 
Ul 

Pl 2. Densi ty  Rat io  - 
P2 

3. Radius Ra t io  
R l  
R 
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NRe, 2 4 .  Reynolds Number 

NSc, 2 5. Schmidt Number 

p2 6 .  Viscos i ty  Rat io  - 
111 

(Subscr ipts  1 and 2 r e f e r  t o  t h e  inner and t h e  outer  jets,  respect ively.)  

The Reynolds number used f o r  t he  parametric study is  t h a t  of t he  outer  

stream and t h e  Schmidt number is  based on t h e  v i s c o s i t y  of t h e  ou ter  

stream, I n  order t o  vary dens i ty  r a t i o ,  Schmidt number and v i s c o s i t y  

r a t i o  independently of one another,  t h e  numerical values  of dens i t i e s ,  

d i f f u s i v i t y  and v i s c o s i t i e s  are assumed ins tead  of being ca l cu la t ed  

from t h e  a u x i l i a r y  expressions.  

A t o t a l  of 57 cases  is inves t iga ted  f o r  t h e  s teady confined 

coax ia l  c i r c u l a r  j e t  mixing problem and the  e f f e c t s  of the  v a r i a t i o n  

of t h e  above mentioned parameters are s tudied.  For the  cases  i n  ves- 

t i ga t ed ,  t h e  va lues  of these  parameters are presented i n  t abu la r  form 

i n  Appendix D. The b a s i s  of t hese  runs i s  an a i r - f reon  system; a 

similar system i s  a l s o  being experimentally inves t iga ted  by Weinstein 

and h i s  a s soc ia t e s  at t h e  I l l i n o i s  I n s t i t u t e  of Technology. The range 

of values  of t h e  parameters s tud ied  includes many phys ica l  systems of 

p r a c t i c a l  i n t e r e s t .  Some combinations of t hese  parameters lead t o  an 
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adverse pressure  grad ien t  i n  t h e  i n i t i a l  reg ion  of t h e  flow f i e l d  and 

t h i s  behavior of t h e  flow may be  a t t r i b u t e d  t o  the  d i s c o n t i n u i t i e s  i n  

t h e  i n i t i a l  p r o f i l e s .  I f  t h i s  region i s  very sho r t ,  t h e  computed 

f u l l y  developed flow parameters s t i l l  compare w e l l  with t h e  cor re-  

sponding asymptotic va lues  ca l cu la t ed  independently from simple theor- 

e t i c a l  considerat ions.  However, i f  t h e  adverse pressure  grad ien t  

p e r s i s t s  up t o  a s u f f i c i e n t  length of the i n i t i a l  region,  t h e  agree- 

ment between the  asymptotic flow parameters i s  only f a i r ,  I n  some 

o ther  cases ,  t h e  pressure  grad ien t  i s  favorable  but  o s c i l l a t o r y ;  

s a t i s f a c t o r y  agreement is s t i l l  obtained between the  f u l l y  developed 

values  of t h e  flow parameters. I n  a l l  such cases ,  t h e  i n i t i a l  mixing 

region is  most a f fec ted .  

Some of t h e  parameters t o  be inves t iga ted  i n  t h i s  study demand 

an unreasonably s m a l l  s t e p  s i z e  Az i n  order t o  obta in  a s t a b l e  solu- 

t ion .  The increased number of computations leads t o  inaccuracies ,  t h e  

e f f e c t  of which is manifested i n  t h e  f u l l y  developed c e n t e r l i n e  veloc- 

i t y .  I n  such a case, the  c e n t e r l i n e  ve loc i ty  exceeds the  corresponding 

asymptotic va lue  computed independently from simple t h e o r e t i c a l  consid- 

erat ions e 

It may be r e c a l l e d  here  t h a t  t h e  t ransformation of t h e  problem 

from t h e  phys ica l  plane f o  t he  von Mises plane,  o r  fu r the r  t o  t h e  cp-z 
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plane, w a s  performed mainly t o  avoid numerical i n s t a b i l i t i e s  a t  high 

ve loc i ty  r a t i o s ,  However, it w a s  found later t h a t  when t h e  v e l o c i t y  

reached a value where a s t a b l e  so lu t ion  w a s  not obtainable ,  u2 r a t i o  - 
Ul 

increase of t h e  dens i ty  r a t i o  - p1 
p2 

t he  mass f l u x  r a t i o  - ”” , and not t h e  ve loc i ty  r a t i o  - a lone, 

i s  t h e  deciding parameter f o r  a s t a b l e  convergent numerical so lu t ion .  

S imi la r ly ,  decrease of t h e  r ad ius  r a t i o  - 

s t a b i l i z e d  t h e  so lu t ion .  Hence, 

Ul Pl Ul 

f u r t h e r  increases  t h e  R1 
R 

range of mass f l u x  r a t i o s  f o r  which a s t a b l e  so lu t ion  is obtainable ,  

must be t h e  parameter and - Rl Pl 

Ul p2 

U - 2 
R Thus, some combination of - , 

governing t h e  s t a b i l i t y  of t h e  so lu t ion .  This  suggests  t h a t  some 

grouping of a l l  t h e  parameters of t h e  problem should be the  deciding 

c r i t e r i o n  f o r  t h e  ex is tence  of a s t a b l e  numerical so lu t ion .  Although 

t h i s  idea w a s  explored t o  some ex ten t ,  no s u i t a b l e  group could be  

formed which would ensure a s t a b l e  so lu t ion .  

Some of t h e  inves t iga ted  cases demanded a s t e p  s i z e  considerably 

smaller than those pred ic ted  by s t a b i l i t y  ana lys i s ;  these  cases have 

been s tudied  only f o r  small d i s t ances  downstream due t o  the  increased 

computer t i m e  requirements 

The r e s u l t s  of t h e  57 cases  inves t iga ted  f o r  t h e  parametric study 

u2 Is p, - Rl present  t he  e f f e c t s  of t h e  six parameters - - 
NSc,2 and - - on 

U, ’ pa ’ R ’ NRe,2 ’ 
1.12 

1.11 
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1. 

2. 

3 ,  

4 .  

and 5. 

t h e  mass f r a c t i o n  p o t e n t i a l  co re  

t h e  ve loc i ty  p o t e n t i a l  core  

L 
a1 

LV 

t h e  c e n t e r l i n e  v e l o c i t y  V 
Z¶1 

L w  t h e  w a l l  m a s s  f r a c t i o n  a 

t h e  index of t h e  e f f e c t  of mixing 11 

The r e s u l t s  of some se l ec t ed  runs are presented i n  order  t o  show 

t y p i c a l  e f f e c t s  of t h e  parameters of t h e  problem, The developing pro- 

f i l e s  of axial v e l o c i t y  v and m a s s  f r a c t i o n  al are a l s o  presented 

f o r  some t y p i c a l  runs. 

z 

* 
4.5.1 Ef fec t s  of Flow Parameters on L 

a1- 

Figures  4 through 8 present  t h e  e f f e c t s  of t h e  var ious  parameters 

u2 
on L . Figure 4 shows t h a t  L decreases as - increases ,  but 

L increases  as - increases .  The f r a c t i o n a l  increase of L due 

a1 a1 u1 

0 1  p2 m1 
p1 u2 

p2 Ul a1 
t o  an increase  i n  - i s  l a rge r  f o r  higher - Also, L decreases 

very r ap id ly  f o r  - between 1 and 5. It must be mentioned here  t h a t  
u2 

U1 
p1 u2 

p2 Ul 
t h e  case with - = 8.3 could not  be inves t iga ted  f o r  - less than 

5 f o r  reasons of numerical i n s t a b i l i t y .  

* 
L i s  t h e  value of z where t h e  mass f r a c t i o n  a1 a t  the  center -  
to, 

l i n e  has  changed by less than f i v e  percent  of i t s  o r i g i n a l  c e n t e r l i n e  

value 
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a t  two d i f f e r e n t  dens i ty  r a t i o s  'Re, 2 
The e f f e c t  of change i n  

u2 

U l  
is presented i n  Figure 5 .  These r e s u l t s  are f o r  t he  case  of - = 5  

Rl  

R to, 
and - - - 0 . 5 6 3 .  It i s  seen t h a t  L increases  with increase  i n  

. The increase  of L with as w e l l  as wi th  increase i n  - Pl 

NRe, 2 p2 cu, 
is almost l i nea r .  Comparison of Figure 5 wi th  Figure 6 shows NRe, 2 

u2 R l  

R Ul 
i s  decreased from 0.563 t o  0.28 and - is  increased t h a t  when - 

from 5 t o  30, t h e  na ture  of v a r i a t i o n  of L with respec t  t o  both  
w, 

remains unchanged. However, t h e  value of L i s  
PI 

and - 
NRe, 2 p2 Wl 

reduced approximately 80-fold i n  t h e  latter case. Figure 7 shows t h a t  

L increases  almost l i n e a r l y  wi th  N From Figures  5, 6 ,  and 7, 

it i s  seen t h a t  t h e  e f f e c t  of increase  i n  - i s  l a rge r  a t  higher 

W1 sc ,2  = 

p1 

p2 

values  of N R e ,  2 and NSc,2 e Figure 8 shows t h a t  t he  e f f e c t  of 

4.2, t h e  changes i n  change i n  -- on L is r a t h e r  small. A t  - = 
IJ.2 Pl 

PI u1 P2 

PI 
Wl p2 
L are almost l i n e a r ,  but t h i s  is not  t r u e  for  - = 8.3, s ince  a 

IJ.2 
maximum i s  observed i n  t h e  v i c i n i t y  of - = 1-75" Also,  L 

Pl a1 
Pl 

p2 
increases  i n  the  s a m e  proport ion as - I 
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* 
4.5.2 Ef fec t s  of Flow Parameters on L 

V 

are presented i n  
LV 

The e f f e c t s  of t h e  var ious parameters on 

Figures  9 through 12. Figure 9 shows t h a t  Lv increases  with increase 

i n  - , t h e  increase  i n  
u2 u2 

u, being l a rge r  a t  higher values  of - . 
LV u, - 

u2 

p2 Ul 
lncr  ease s Lv, but  f o r  - U% Pl 

Ul 
For - less than 6, an increase i n  - 

P.. 
1 

grea te r  than 6, higher - causes a reduct ion i n  Lv. Thus, i n  t he  
p2 

u2 Pl 

U1 p2 
v i c i n i t y  of - - - 6, Lv may be  in sens i t i ve  t o  change i n  - I 

NRe,2  * 
Figure 10 shows t h a t  Lv increases  with increase  i n  

Pl 
decreases with reduct ion i n  - , u2 R.1 

Ul R LV p2 
For - = 5 and - = 0.563, 

t h e  e f f e c t  being smaller a t  lower va lues  of N S i m i l a r  behavior Re ,2  * 

0.28, however, t h e  reduct ion is a l s o  observed f o r  - = 30 and - = u2 R l  
Ul R 

i n  Lv is comparatively smaller, It i s  seen from Figure 11 t h a t  L 
V 

increases  with increase  i n  N t he  increase  being l a rge r  a t  higher  sc ,2  , 

LV 
decreases Lv and t h i s  decrease i n  

Pl 

p2 
N S c y 2  e An increase  i n  - 

is  usua l ly  defined as t h a t  value of 
LV 

Jr For unconfined mixing, 

z where t h e  c e n t e r l i n e  a x i a l  ve loc i ty  v has  changed by less than 

5 percent  of i t s  o r i g i n a l  c e n t e r l i n e  value,  According t o  t h i s  de f in i -  
Z Y l  

t i o n ,  t h e r e  e x i s t s  no p o t e n t i a l  co re  f o r  t h e  case of confined mixing 

Hence, fo r  confined mixing, of je ts  with la rge  ve loc i ty  r a t i o  - 
where t h e  c e n t e r l i n e  a x i a l  ve loc i ty  

u.2 

Ul 
is defined as t h a t  value of z 

has the  value U, + 0.05 (U, - U,) . The concept of a v e l o c i t y  

LV 

p o t e n t i a l  core  is  thus  r e t a ined  by t h i s  d e f i n i t i o n ,  
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increases  with increase i n  N Figure 12 shows t h a t  t he  v a r i a t i o n  

1.12 
of Lv with - 

1.11 

meters discussed so f a r .  

s c ,2  ' 

is  e n t i r e l y  d i f f e r e n t  from tha t  with t h e  other  para- 

A d i s t i n c t  maximum exists i n  the  v i c i n i t y  of 

shows a marked decrease i n  Lv . Pa Pl 

cL1 p2 
- M 1-4 . Also, an increase i n  - 

4 . 5 . 3  Effec t s  of Flow Parameters on v 
z, 1 

Figures  13 through 18 present  t h e  e f f e c t s  of t h e  parameters on 

* 
t he  c e n t e r l i n e  a x i a l  ve loc i ty ,  v e The e f f e c t s  of ve loc i ty  r a t i o  

z , 1  

fo r  two dens i ty  r a t i o s  are shown i n  Figure 13. It i s  seen t h a t  fo r  

equal d e n s i t i e s  of t h e  inner and outer  streams, an increase i n  !!a 
Ul 

from 1.1 t o  4 causes an increase i n  v as may be expected; but f o r  
2 3 1  

almost equal  v e l o c i t i e s  of t he  inner  and outer  streams, an increase i n  

from 1 t o  4.2 causes a small decrease i n  v . An i n f l e c t i o n  is  Pl 
Pa z, 1 
- 

u2 

Ul 
noticed i n  the  curve fo r  - = 4 indica t ing  r ap id  changes i n  t h e  rate 

of flow development i n  t h e  i n i t i a l  region. 

i s  t o  reduce t h e  c e n t e r l i n e  ve loc i ty  i n  the  mixing and the  i n  - 
The e f f e c t  of an increase 

p1 

p2 

i n i t i a l  developing regions.  This  e f f e c t  decreases  with d i s t ance  down- 

stream so t h a t  beyond a c e r t a i n  value of z, t h e  curves f o r  d i f f e r e n t  

but  same - u2 w i l l  merge together .  This  is i n  accordance with the  Pl 
Pa Ul 
- 
known f a c t  t h a t ,  f o r  a f ixed  ve loc i ty  r a t i o ,  t h e  asymptotic value of 

t h e  c e n t e r l i n e  ve loc i ty  i s  independent of t h e  dens i ty  r a t i o .  

* The c e n t e r l i n e  a i a l  v e l o c i t y  vz is  made non-dimensional with 

The e f f e c t  

I 1  
respec t  t o  Ul . 
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on v i s  less pronounced at low v e l o c i t y  r a t i o s .  of change i n  - Pl 

p2 2, 1 
u2 
U1 

Figure 13 a l s o  shows t h a t ,  f o r  - 
po in t s  occur i n  t h e  i n i t i a l  region 

the  ra te  of flow development. For 

the  d e t a i l s  of t he  i n i t i a l  po r t ion  

v i s i b l e  because of t h e  s c a l e  used. 

P 

P2 
= 15 and - - 8.3,  i n f l e c t i o n  

again ind ica t ing  r ap id  changes i n  

_.- u2 - 5 and both  dens i ty  r a t i o s ,  
Ul 

of t h e  v curves are not  c l e a r l y  
2 2 1  

Rz The e f f e c t s  of change i n  - on the  c e n t e r l i n e  v e l o c i t y  are R 

presented i n  F igure  14. For a f ixed  v e l o c i t y  r a t i o ,  a decrease i n  

from 0.563 t o  0.28 causes  an increase i n  v i n  t h e  e n t i r e  flow Rl 
R Z , 1  
- 

f i e l d ,  as may be  expected. I n  t h e  i n i t i a l  region,  t he  curve f o r  

R 
- -  R1 - 0.28 A - - 0,563, thus  R R i s  considerably s teeper  than  t h a t  f o r  

i nd ica t ing  the  r a p i d i t y  with which t h e  momentum def ic iency  i s  overcome 

i n  t h e  former case. 

increases ,  v decreases  a 

NRe , 2 Z , 1  
F igure  15 shows t h a t  a s  

However, f o r  a f ixed  v e l o c i t y  r a t i o ,  the  asymptotic values  of t he  

c e n t e r l i n e  v e l o c i t i e s  a r e  the  same f o r  a l l  t h e  cases  shown i n  Figure 

R e , 2  ‘Om- 
15. Also, t h e  na tu re  of t h e  curves i s  independent of N 

par ison of 17 igures  15 and 16 shows t h a t ,  as u2 - is  increased from 5 

t o  30 and -L i s  decreased from 0,563 t o  0.28, t h e  e f f e c t  of N 

Ul 
R 

R Re,2 

remains almost una l te red ,  However, t h e  i n f l e c t i o n  po in t s  observed i n  

the i n i t i a l  reg ion  of F igure  15 are not  seen in  t h e  cases of F igure  16 
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and s teeper  s lopes  of t h e  v curves are observed i n  t h e  i n i t i a l  
2 3 1  

region ind ica t ing  r ap id  mixing i n  t h i s  region. 

on t h e  c e n t e r l i n e  ve loc i ty  are NSc,2 The e f f e c t s  of change i n  

presented i n  Figure 17. The c e n t e r l i n e  v e l o c i t y  v decreases i n  

the  e n t i r e  flow f i e l d  as N increases  from 0.75 t o  2.0. The 

asymptotic values  of v 

shown i n  t h i s  f igure .  The case f o r  N = 0.75 w a s  not i nves t i -  

gated beyond 

2 2 1  

s c ,2  

should be  the  same f o r  t h e  th ree  cases  
z , l  

sc ,2  

z = 65R, s ince  numerical s t a b i l i t y  demanded a very  small 

- AZ and, consequently, l a rge  computer t i m e .  For t he  case  of N - 
sc ,2  

2.0, adverse pressure  grad ien t  w a s  observed from z = 0.16R t o  z = 

3.12R, 

4.5.4 

r e s u l t i n g  i n  a trough i n  the  v curve i n  t h e  i n i t i a l  region. 
2 9 1  

E f f ec t s  of Flow Parameters o n w  
1 ,w 

The inf luence of t h e  parameters on t h e  w a l l  m a s s  f r a c t i o n  w 
1 , w  

are presented i n  Figures  19 through 24. Figure 19 shows t h a t  increase 

i n  - u2 decreases LU 
U 2 t he  decrease being smaller a t  higher 

l , w  ’ Ul Ul 

as may be expected. An pl Also, an increase i n  7 increases  w 
1 , w  

P 
tends t o  reduce t h e  spreading 

p2 
R 

R 20, reduct ion of - from 0.563 t o  

I-12 

increase  i n  or  a decrease i n  
Ul 

of t h e  jets, A s  seen from Figure 

0.28 causes a reduct ion of inner 

decrease of w . For t h e  case 
l a w  

stream m a s s  flow rate  r e s u l t i n g  i n  

- 0.563, t h e  asymptotic with - - R l  
R 
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value of u) is a t t a i n e d  a t  z w 400R, hence, a s teep  s lope  is 

s t i l l  present  a t  z = 250R fo r  t h i s  case, 

1 ,w  

is  t o  NRe, 2 Figure 21 shows t h a t  t h e  e f f e c t  of increasing 

decrease the  va lue  of u) i n  t h e  e n t i r e  f i e l d .  The th ree  curves 

R1 - 0.563. These presented here  are f o r  t h e  case of - = 5 and - - 
curves are s i m i l a r  and show t h a t  an increase of N 

1 ,w 
u2 
U l  R 

de lays  t h e  R e ,  2 

mixing t o  some exten t .  Also, a l l  these  curves should merge together  

beyond some va lue  of z s ince  t h e  asymptotic value of u) depends 1 

only on the  dens i ty  r a t i o ,  ve loc i ty  r a t i o  and area r a t i o  which were 

maintained constant  when N w a s  varied.  Comparison of Figures  

i s  21 and 22 shows t h a t ,  as - 
R e ,  2 

RI u2 
U l  R 

i s  increased from 5 t o  30 and - 
decreased from 0.563 t o  0.28, the  e f f e c t  of N remains almost R e ,  2 

unchanged. The flow i s  f a r  from being f u l l y  mixed within t h e  a x i a l  

d i s tance  inves t iga ted  and, hence, t h e  curves i n  Figure 22 are diverg- 

ing with s t eep  s lopes.  The curves presented i n  Figure 22 show a 

similar behavior, but  mixing i s  r e l a t i v e l y  f a s t e r  i n  t h e  i n i t i a l  region. 

Also, t h e  asymptotic value of u) w i l l  be t h e  same fo r  a11 th ree  
1 , w  

curves of t h i s  f i gu re .  

The e f f e c t s  of v a r i a t i o n  of N on 03 are presented i n  
sc ,2  1 , w  

Figure 23. An increase i n  N shows a marked decrease i n  LC, 
sc ,2  1 , w  



and i n  t h e  rate of mixing. Mixing is  except iona l ly  f a s t  f o r  t h e  case 

- 0 . 7 5 .  This  case was invest’igated only up t o  z = 60R 
Of *sc,2 

because t h e  requirement of small Az r e s u l t e d  in l a rge  computer t i m e .  

The asymptotic value of cu 

of Figure 23, s ince  - 
w i l l  be  the  same f o r  t h e  t h r e e  curves 

1 ,w 

ua - ” and ’21 are cons tan t  for  t hese  cases.  
R u, ’ P,. 

4 . 5 . 5  Effec t s  of Flow Parameters on ?l 

Figures  25 through 30 present  t he  e f f e c t s  of t he  parametere on 

11 where 

1 
I 

mass of spec ies  1 i n  a given volume (between the  entrance 

sec t ion  and a sec t ion  downstream) of t h e  confining duct 

of spec ies  1 i n  the  same volume had the re  been no 
? l =  

Expressed mathemat ica 1 ly 

L R  

Thus, 7‘l may be considered as some index of t h e  e f f e c t  of 

mixing of t h e  two streams. A t  z = 0, 1 is indeterminate,  hence, 

t h e  f i r s t  po in t  f o r  t h e  p l o t t e d  curve is  taken a t  a s u i t a b l e  small down- 

stream dis tance.  Also, s ince  t h e  r e s u l t s  are obtained a t  va lues  of z 
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which are some i n t e g r a l  mul t ip les  of AZ and not  of t h e  confining 

duct r a d i u s  R, t h e  last  p o i n t s  p l o t t e d  are not  t h e  same f o r  a l l  

t h e  curves. Figure 25 shows t h a t  1 decreases with increasing d i s -  

tance downstream. 7 a l s o  decreases as - 
creases as - 

increases  and 1 in- u2 

Ul 

is  Pl Pl 

p2 P 2  
increases .  The e f f e c t  of v a r i a t i o n  i n  - 

l a rge r  a t  higher values  of  - ,. As seen from Figure 26, 7 i n -  

creases as - 
Ul 

1 
R 

R 
inc reases ,  For t h e  case of - = 0.28, 7 )  decreases R1 

R 

very r a p i d l y  up t o  z = 1R beyond which point  t h e  ra te  of decrease 

is gradual,  

The e f f e c t s  of N on 7 are presented i n  Figure 27. R e ,  2 

- 0,563 . RI - 5 and - -  For a l l  t h r e e  curves shown i n  t h i s  f i gu re ,  - - uz 
R Ul 

It i s  seen t h a t  7 decreases gradual ly  with downstream d i s t ance  and 

7 increases  with increase i n  N and t h e  curves e x h i b i t  a s i m i l a r  Re,2 

i s  in- 
u2 

behavior,  Comparison of Figures  27 and 28 shows t h a t  as - 
Ul 

i s  decreased from 0.563 t o  0-28, t h e  R1 creased from 5 t o  30 and - R 

e f f e c t  of NRe,2 on 7 remains s i m i l a r  but  it becomes less pro- 

nounced, However, t h e  curves of Figure 28 show t h a t  t h e  decrease of 

1 is extremely r ap id  up t o  z = 1R. 

w a s  va r i ed  %c 9 2 on 1. NSc 9 2 Figure 29 shows t h e  e f f e c t  of 

i s  increased, D12 is reduced, %c, 2 by changing D12 only. Hence, as 

i , e , ,  t h e  d i f f u s i o n  process is slowed down, Since t h e  v e l o c i t y  i n  the  
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outer  stream is higher than i n  the  inner stream, slower d i f fus ion  

r e s u l t s  i n  an increase of 7 , which is c l e a r l y  seen from Figure 29. 

It is noted here  t h a t  the  e f f e c t  of change i n  2 on t h e  
V1 

c e n t e r l i n e  v e l o c i t y  vZs1 , t he  w a l l  mass f r a c t i o n  u) and the  L w  

mixing index 1 are preseated i n  Figures  18, 24, and 30  respec t ive ly .  

The e f f e c t  of change i n  - I”’ 
Pl 

La r a t h e r  small and, hence, no d e f i n i t e  

t rend of t he  r e s u l t s  .can be e s t ab l i shed  from the  above f igures .  For 

aome of these c a ~ e s ,  a p o s i t i v e  pressure gradient  or  a negative os- 

c i l l a t o r y  pressure grad ien t  was a l s o  observed. Further invea t iga t ion  

var ia- is necessary i n  order t o  determine t h e  d e f i n i t e  e f f e c t s  of - 
P1 
Pa 

t i o n  on the  jet  mixing. 

4.5.6 Veloci ty  and Mass Frac t ion  F i e l d s  f o r  Typical Runs 

Figures  31 through 34 show the  development of the  axial ve loc i ty  

* 
p r o f i l e s  fo r  Run Nos. 5 5 ,  4 3 ,  6 ,  and 49, respect ively.  A t  t he  entrance,  

i.e., z = 0, a d i scon t inu i ty  e x i s t s  at  r = Rx due t o  the  na ture  of 

t h e  i n l e t  ve loc i ty  p r o f i l e .  A d i scon t inu i ty  e x i s t s  a l so  a t  r - R be- 

cause of t he  no-slip condi t ion at  t h e  w a l l ,  These d i s c o n t i n u i t i e s  are 

indicated by broken l i n e s  i n  the f igures ,  Since the  i n i t i a l  region is 

of p a r t i c u l a r  i n t e r e s t ,  t he  ve loc i ty  p r o f i l e s  are presented only up t o  

z = 1OR. 

* 
The f u l l y  developed’veloci ty  p r o f i l e s  have a l s o  been presented 

The axial ve loc i ty  is made non-dimensional with respec t  t o  U, . 
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s ince  they  were used f o r  p a r t i a l  v e r i f i c a t i o n  of the r e s u l t s  by 

comparing them wi th  t h e  asymptotic v e l o c i t y  p r o f i l e s  obtained in- 

dependently from simple t h e o r e t i c a l  considerat ions.  Figure 31  shows 

U 
I, with = 1.1, Pl t he  r e s u l t s  f o r  t h e  homogeneous case,  i.e., -I 

P2 Ul 

while  Figures  3 2 ,  3 3 ,  and 34 show t h e  r e s u l t s  f o r  t h e  heterogeneous 
h tJ 

cases  wi th  = 4 , 2 .  The axial  v e l o c i t y  p r o f i l e s  develop s i m i l a r l y  
p2 

f o r  a l l  t he  cases .  For the  heterogeneous cases ,  an increase  i n  5 
Ul 

from 5 t o  15 causes  a reduct ion  i n  t h e  developing length,  A fu r the r  

!L t o  0.28 R increase  of - u2 t o  30 with  a simultaneous reduct ion  of 
Ul 

r e s u l t s  i n  a considerable  reduct ion of t h e  developing length.  Extra- 

po la t ion  of these  r e s u l t s  on t h i s  b a s i s  suggests  t h a t  t he  developing 

length f o r  t h e  case with - = 1.1 should be g rea t e r  than t h a t  f o r  uz 
Ul 

uz pl 
Ul p2 

t h e  case with - = 5. However, a simultaneous reduct ion i n  - 
from 4 . 2  t o  1 reduces t h e  developing length sharply.  

The developing p r o f i l e s  of m a s s  f r a c t i o n  u1 are presented 

PI 
pa 

i n  F igures  35 through 37 f o r  t h e  heterogeneous cases with - = 4 . 2  . 
A t  t h e  entrance sec t ion ,  i.e., z = 0, a sharp d i scon t inu i ty  exists 

a t  r = Rl on account of t he  na tu re  of t he  i n l e t  mass f r a c t i o n  pro- 

f i l e  and has been shown by broken l i n e s  i n  t h e  f igures .  The m a s s  

f r a c t i o n  p r o f i l e s  are shown only f o r  t h e  near j e t  reg ion  which i s  of 

p a r t i c u l a r  i n t e r e s t ,  and are presented f o r  t h e  same va lues  of z f o r  
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which the axial ve loc i ty  p r o f i l e s  have been discussed already. 

As - u2 

shows an increase  i n  t h e  ra te  of mixing. 

increases  from 5 t o  15, comparison of Figures  35 and 36 
U1 

Mixing i s  sharply enhanced 

R 
R 

u2 - 30 and A = 0.28 e From t h e  curves f o r  the  fo r  t he  case of - - 
l a r g e s t  value of z presented it i s  seen t h a t  t he  flow i n  a l l  t h ree  

cases  has  not  y e t  mixed f u l l y  s ince  t h e  mass f r a c t i o n  p r o f i l e  i n  the  

f u l l y  mixed s ta te  should be uniform. This  may be v e r i f i e d  from t h e  

f a c t  t h a t  t he  Schmidt number N fo r  t h e  o v e r a l l  flow is  s l i g h t l y  

g rea t e r  than uni ty .  

Ul 

s c  
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CHAPTER 5 

CONCLUSION 

The laminar heterogeneous mixing of coax ia l  axisymmetric 

confined jets has been inves t iga t ed  in  order  t o  provide a b e t t e r  

understanding of t he  f l u i d  mechanics of a coax ia l  flow gas-core 

nuclear  r e a c t o r .  The ana lys i s  i s  v a l i d  i n  t h e  complete entrance 

region of t h e  confining duct and permits  wide v a r i a t i o n s  of t h e  

i n l e t  parameters e The flow f i e l d  considered was isothermal  and 

non-reacting. The low-velocity and high-density c e n t r a l  gas stream 

mixes with a coflowing high-veloci ty  low-density annular stream. 

The mathematical model of t he  problem was descr ibed by the  boundary 

layer  equat ions i n  the  von Mises plane.  These equat ions were solved 

by an e x p l i c i t  f i n i t e  d i f f e rence  scheme. Numerical s t a b i l i t y  of t he  

f i n i t e  d i f f e rence  equat ions w a s  ensured by s a t i s f y i n g  Karplusr  sta- 

b i l i t y  c r i t e r i o n .  The von Neumann s t a b i l i t y  ana lys i s  w a s  found t o  

y i e l d  s t a b i l i t y  condi t ions  s i m i l a r  t o  Karplus '  condi t ions .  

The r e s u l t s  of t h e  present  a n a l y s i s  cannot be va l ida t ed  by 

d i r e c t  comparison s ince  ne i ther  experimental  nor a n a l y t i c a l  r e s u l t s  

are a v a i l a b l e  f o r  such a flow problem. Hence, t h e  numerical method 

118 
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developed w a s  v e r i f i e d  by using it t o  solve t h e  c lass ical  entrance 

flow problem. Also, as a p a r t i a l  check on t h e  r e s u l t s  of each case 

invest igated,  t he  f u l l y  developed values  of t h e  flow parameters were 

compared with t h e  corresponding asymptotic values  t h a t  were obtained 

independently from simple t h e o r e t i c a l  considerat ions.  The agreement 

obtained i n  these  comparisons e s t a b l i s h e s  r e l i a n c e  i n  t h e  numerical 

r e su  It s I) 

p1 R, - - u2 
The e f f e c t s  of t h e  parameters - 

U1 ’ Pz ’ R ’ NRe,2 ’ 
and q. 

NSc92 ’ 1-11 hl’ Lv ’ vz,2’ 01, 1 ’W 
were s tud ied  on and - ”2 

A t o t a l  of 57 flow cases, presented i n  Appendix D, w a s  invest igated.  

Typical. running t i m e  f o r  generat ing t h e  r e s u l t s  up t o  f u l l y  developed 

flow values  was about t e n  minutes on t h e  IBM 360/40 computer. The 

following conclusions may be drawn from t h e  r e s u l t s  of t h e  parametric 

study. 

L”u1 ’ 
The length of t h e  mass f r a c t i o n  p o t e n t i a l  core ,  

u2 01 . -  
decreases as - increases ,  bu t  increases  as - as w e l l  as 

U1 1 P2 

NSc, 2 
increase * Also, L cu1 

increases  wi th  increase i n  

is u2 is reduced and - R1 t h i s  v a r i a t i o n  remains similar when - 
R Ul 

s u b s t a n t i a l l y  increased. 
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The length Lv of t h e  v e l o c i t y  p o t e n t i a l  co re  increases  wi th  

u2 

Ul sc ,2  . increase i n  - as w e l l  as with increase i n  N An increase i n  

and, a t  constant  NRe,2,  an increase 
LV 

causes an increase i n  NRe, 2 

i n  - R1 Lv; similar behavior i s  a l s o  observed a t  lower - R increases  Pl 

p2 

causes an Pl u2 

Ul P2 
A t  low v e l o c i t y  r a t i o s ,  increase i n  - and higher - 
bu t  a t  higher v e l o c i t y  r a t i o s ,  higher - ’1 

LV’ p2 
r e s u l t s  increase i n  

i n  smaller Lv . These conclusions must be subs t an t i a t ed  wi th  f u r t h e r  

is very s e n s i t i v e  t o  pressure gradient .  
LV 

r e s u l t s  as 

For incompressible flow, t h e  asymptotic c e n t e r l i n e  v e l o c i t y  

depends only on t h e  r a d i u s  r a t i o  and t h e  entrance v e l o c i t i e s ,  so t h a t  

t h e  e f f e c t  of t h e  o the r  parameters i s  confined t o  the  mixing region 

only. An inc rease  i n  - 

mixing region, while an increase i n  

reduces t h e  cen te r  l i n e  v e l o c i t y  i n  the  Pl 

p2 
R - ’ 
R slows down the development 

of t h e  f Low, An increase o f  N decreases t h e  c e n t e r l i n e  v e l o c i t y  

- 5 and -- = 0,563; t h i s  behavior remains unal tered when f o r  - - 
is reduced t o  0.28. The c e n t e r l i n e  

Re,2 

R1 U2 
U, R 

R1 is increased t o  30 and - uz 
Ul R 

v e l o c i t y  decreases  wi th  increase i n  NSc,2; t h e  flow develops f a s t e r  

f o r  lower N sc ,2  

reduces t h e  R1 o r  - 
R ’  

Pl 
Ul 02 

U 
2 An increase i n  - o r  a decrease i n  - 

spreading of t h e  j e t ,  The asymptotic value of t h e  m a s s  f r a c t i o n  depends 

f o r  incompressible flow; R1 and - u2 - p1 
R only on t h e  r a c i o s  - u, ’ p2 
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hence the  e f f e c t  of t h e  o ther  parameters is f e l t  i n  t h e  i n i t i a l  mixing 

increase s 
NRe, 2 region only. The w a l l  mass f r a c t i o n  decreases  as 

is  uz - 0.563; t h i s  e f f e c t  is similar when - fo r  - = 5 and - - 
9 

u2 R1 

Ul R Ul 

is  reduced t o  0.28, with t h e  exception t h a t  1 increased t o  30 and - R 

mixing i s  considerably f a s t e r  i n  t h e  la t ter  case. An increase i n  

causes a marked decrease on t h e  ra te  of mixing. 
NSc,2 

* 
The e f f e c t  of mixing is indicated by a m a s s  r a t i o  ?1 

increases;  Pl 
increases  and 7 increases  as - 

Ul pz 
u2 1 decreases as - 

decreases as - R1 decreases,  i nd ica t ing  a considerable  reduct ion i n  
R 

R 

R 
- 5 ,  - =  ’ 0.563, increase of u2 t he  loss of mass of t he  j e t ,  A t  - -  

Ul 
TT 

2 
U 

increases  0; t h i s  e f f e c t  remains s i m i l a r  on increasing - 
NRe,  2 u, 
t o  30 and reducing - t o  0.28, although i n  the  l a t t e r  case,  mixing 

R 

is  very r ap id ,  Increase of N r e t a r d s  the  m a s s  d i f fus ion  process,  sc ,2  

r e s u l t i n g  i n  an increase i n  0. 

A reduct ion i n  t h e  developing length r e s u l t s  from an increase  

An increase i n  - u2 leads t o  r ap id  P l  
Ul p2 U1 

or  a decrease i n  - u2 i n  - 

* 
A s  def ined i n  4.5.5 

I m a s s  of spec ies  1 i n  a given volume (between the  entrance 
sec t ion  and a sec t ion  downstream) of t he  confining duct 
mass of species 1 i n  the  same volume had there  been I E no mixing 
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change of t h e  c e n t e r l i n e  values ,  i.e., r ap id  mixing and narrower 

je t .  

For some combinations of t he  flow parameters, a p o s i t i v e  

pressure  grad ien t  o r  an o s c i l l a t o r y  negat ive pressure  grad ien t  w a s  

observed i n  t h e  i n i t i a l  region, These lead t o  r a t h e r  inexact  de- 

s c r i p t i o n  of t h e  i n i t i a l  region and a d e t e r i o r a t i o n  i n  t h e  agree- 

ment of t h e  end values ,  depending upon t h e  ex ten t  of t he  a f fec ted  

i n i t i a l  region. This  behavior i s  not  completely understood as ye t  

and fu r the r  i nves t iga t ion  may be necessary. Also, fo r  t he  cases in-  

%? 
111 

ves t iga ted ,  t h e  e f f e c t  of change i n  - w a s  s m a l l ,  so t h a t  no de f i -  

n i t e  t rend of t h i s  e f f e c t  could be es tab l i shed .  

I n  t h e  course of t h e  inves t iga t ion ,  numerical i n s t a b i l i t y  was 

encountered f o r  some combinations of t h e  f l o w  parameters. It i s  

recommended t h a t  some grouping of these  parameters be found i n  order 

t o  determine i t s  range over which a s t a b l e  numerical so lu t ion  may be 

obtained. Also, t he  o r i g i n a l  a i m  of t he  von Mises transformation or 

of t he  9-transformation w a s  t o  ob ta in  s t a b l e  so lu t ions  f o r  a wide 

range of t h e  flow parameters. Experience wi th  a similar je t  mixing 

problem i n  t h e  r-z plane revealed t h a t  t he  range i n  t h e  $ - z  or  

t h e  cp-z plane w a s  not much wider; as such, it may be worth the  
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attempt t o  so lve  the  present  flow problem i n  t h e  phys ica l  plane 

where non-uniform ent rance  p r o f i l e s  can a l s o  be s tudied  more con- 

venien t  l y  e 

A s  mentioned i n  s e c t i o n  405, tu rbulen t  j e t  mixing i s  being 

experimentally inves t iga t ed  by Weinstein and h i s  a s soc ia t e s  a t  t he  

I l l i n o i s  I n s t i t u t e  of Technology, An inves t iga t ion  of confined co- 

axial  tu rbu len t  mixing 

p l e t ed  by t h i s  group, 

of heterogeneous je ts  has  been r ecen t ly  com- 

on the  U The measured e f f e c t s  of - and 
% p2 

j e t  mixing agrees  q u a l i t a t i v e l y  wi th  the  p red ic t ion  of the  present  

r epor t .  Thus f o r  laminar as w e l l  as turbulen t  mixing, 

The length of t h e  mass f r a c t i o n  p o t e n t i a l  core  L 

decreases  as - 
Pl 
p2 

Cul 
increases  and an increase  i n  ua 

ur 
causes a decrease i n  t h e  rate of mixing and hence - 

increases  the  developing length,  

Hence, the  present  s tudy provides t r ends  which are u s e f u l  i n  under- 

s tanding turbulen t  j e t  mixing, 



APPENDIX A 

DERIVATION OF EQUATIONS FOR p ,  * dz AND vr 

A . l  Expression f o r  Density 

The two r e l a t i o n s  employed i n  t h e  de r iva t ion  of Equation ( 4 ) ,  

t h e  expression f o r  d e n s i t y  of a b inary  system, can be found i n  Ref- 

erence 27, These are 

where 

M molecular weight of mixture 

molecular weight of f l u i d  component i; 

i = l , 2  
Mi 

X mole f r a c t i o n  of species  i; i 
i = 1,2 

mass f r a c t i o n  spec ie s  i; 

i = 1,2 

124 
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From Equations (A-1) and (A-2), it can be shown t h a t  

x1 = 

I n  the  present  ana lys i s ,  dens i ty  i s  assumed t o  be a funct ion of 

composition only. Hence, 

where 

P m a s s  average dens i ty  of mixture 

dens i ty  of pure component i; 

i = 1 , 2  
pP, i 

Using the  r e l a t i o n  

x 1 + +  = 1 

Equation (A-4)  becomes 

(A-3) 

(A-4) 

(A-5) 
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Subs t i t u t ing  Equation (A-3) i n t o  Equation (A-6) gives the  requi red  

expression f o r  densi ty .  

(A-7) 

A . 2  Equation of Cons t ra in t  i n  t h e  w-z Plane 

Details of t h e  de r iva t ion  of t he  Equation of Cons t ra in t ,  

Equation (68), which is  used t o  eva lua te  * dz, are given below. 

The mass rate of flow across  every sec t ion  of t h e  duct is 

given by Equation (11). 

R lo 2 m P v Z d r  = I% 

D i f f e r e n t i a t i n g  Equation (A-8) with respec t  t o  z and simplifying, 

This  i n t e g r a l  r e l a t i o n  i n  t h e  physical  plane can be transformed 

t o  t h e  von Mises plane by using t h e  r e l a t i o n  

R Y 

(A- 10) 



127 

where J is t h e  Jacobian of t h e  transformation. 

Using the  r e l a t i o n  (A-lo), Equation (A-9) can be transformed t o  t h e  

von Mises plane as 

(A-11) 

Transforming Equation (A-11) t o  t h e  (p-z plane g ives  

The momentum Equation (67) i n  t h e  (p-z plane can be wr i t t en ,  a f t e r  

rearranging,  as 

(A-13) 

Equation (A-13) is s u b s t i t u t e d  i n t o  Equation (A-12) t o  g ive  
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Rearranging Equation (A-14) y i e l d s  

(A- 15) 

a p  I n  order t o  ob ta in  Equation (68) from Equation (A-15),  t he  t e r m  - 
i n  Equation (A-15) must be replaced by the  de r iva t ive  of Equation 

az 

(A-7). D i f f e r e n t i a t i n g  Equation (A-7) with respec t  t o  z gives 

aZ (A- 16) 
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and s u b s t i t u t i o n  of Equation (A-16) i n t o  Equation (A-15) y i e l d s  

a(ul 
v -  

z a z  4L 
4 

'vz d$ 

(A-17) 

This  equation is t h e  required equation of cons t r a in t .  

A . 3  Equation f o r  Determining vr 

A s  mentioned e a r l i e r  i n  Chapter 2,  v is  determined from a r 

modified form of t h e  con t inu i ty  equation. This  equation fo r  v is  

derived here. 

r 

The con t inu i ty  equation (1) i n  t h e  phys ica l  plane 

(A-18) 
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wlien. i n t eg ra t ed  between r and r + Airs g ives  

r+Al r 

r 

= - I  r - a (Pvz)dr 
az 

[pvrr 1 '+' 
r 

Using the  mean va lue  theorem, Equation (A-19) can be w r i t t e n  as 

where 

r1 = r 

r2 = r + & r  

mv = mean value 

Simplifying, Equation (A-20) becomes 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

Equation (A-23) can be transformed t o  the  9-2 plane as 

(A-24) 
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or 

(A - 2 5 a) 

where 

2 2 
r2 - rl 

(A-25b) 

Solving e x p l i c i t l y  f o r  v , Equation (A-25) gives  the  following 

equation which is  used f o r  t h e  evaluat ion of v . 
r 

r2 

r 

(A -2 6) 
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(A-27) 

(A-29) 
mv 



APPENDIX B 

FINITE DIFFERENCES AND THEIR PRESENT APPLICATION 

F i n i t e  d i f f e rence  techniques p lay  an important r o l e  i n  obtaining 

so lu t ions  of coupled non-linear PDEs not solvable  a t  present  by ana ly t i -  

c a l  methods. A b r i e f  review of t h e  var ious  f i n i t e  d i f fe rence  forms, 

t he  bas i c  d e f i n i t i o n s  of t e r m s  used i n  the  s t a b i l i t y  ana lys i s  and the  

se l ec t ion  of t h e  f i n i t e  d i f fe rence  scheme f o r  t h e  present  study are 

presented here.  

B . l  Approximation of Der iva t ives  by F i n i t e  Differences 

Taylor ' s  series expansion i s  the  bas ic  p r i n c i p l e  used i n  

e s t ab l i sh ing  a f i n i t e  d i f f e rence  approximation (FDA) t o  t h e  der iva-  

t i v e  of a v a r i a b l e  a t  a point .  Assuming t h a t  a s u f f i c i e n t  number of 

higher de r iva t ives  exists,  t h ree  bas i c  forms are ava i l ab le  f o r  FDAs 

of continuous de r iva t ives ,  namely, forward, backward and c e n t r a l  

differences.  

2, these  may be wr i t t en  as 

Using the  d i s c r e t i z e d  rectangular  g r i d  shown i n  Figure 

Forward Difference 

- O(Ar) F(mt1,n) - F(m,n) [2] m,n = A r  

133 
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Backward Difference 

I- o(Ar) 
F(m-1,n) - F(m,n) [SI m,n = A r  

Cen t r a l  Difference 

- O ( A r ) 2  - F(mt1,n) - F(m-1,n) - 
2Ar [E] man 

(B-2) 

Similar ly ,  a second de r iva t ive  can be given by 

+ O ( A r ) 2  (B-4) 
- ,  F(m-l-l,n) - 2F(m,n) + F(m-1,n) 

2 
- 

A r  m, n 

h2F and - aF Forms similar t o  t h e  above FDAs may be derived f o r  - 
a z  az2 

The d i f f e rence  between a de r iva t ive  and t h e  FDA used t o  

represent  it i s  known as the  t runca t ion  e r r o r .  The c e n t r a l  d i f fe rence  

approximation given by Equation (B-3) has  a t runca t ion  e r r o r  of order 

and, hence, i t s  use is  des i red  so  f a r  as possible .  Also,  t h e  

FDAs having t runca t ion  e r r o r s  of order higher  than 

obtained by int roducing add i t iona l  po in t s  i n  t h e  neighborhood of (m,n), 

such as (m,n+2) and (m,n-2), e t c ,  However, with these  forms, s p e c i a l  

( A r ) 2  could be 
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equat ions are needed fo r  t r e a t i n g  t h e  po in t s  adjacent  t o  the boundaries;  

a l s o  t h e  computations a t  each g r i d  poin t  r e q u i r e  increased computer t i m e .  

Reference 34 has  a comprehensive t a b l e  fo r  t h e  var ious  f i n i t e  d i f f e rence  

representa t ions  of continuous der iva t ives .  

B .2 Numerical S t a b i l i t y ,  :Consistency and Convergence 

I n  order t h a t  t h e  obtained so lu t ion  of t h e  f i n i t e  d i f f e rence  

equations (FDEs) be meaningful, it is  necessary t o  ensure consis tency,  

s t a b i l i t y  and convergence of t he  numerical computation scheme used. 

Von N e ~ m a n n ' s ~ ~  d e f i n i t i o n s  of these  t e r m s ,  as in t e rp re t ed  by Agarwal 

and Torda,18 are included here  fo r  t h e  sake of completeness. 

An FDE i s  cons i s t en t  with i t s  corresponding PDE i f  t he  

t runca t ion  e r r o r  i n  t h e  d i f f e rence  equation goes t o  zero as t h e  g r i d  

s t e p s  approach zero. 

An FDE i s  s t a b l e  i f  i t s  numerical so lu t ion  remains bounded a t  

given values  of t h e  independent coordinates  as t h e  s t e p  s i z e s  tend 

t o  zero. 

equations,  and has  no d i r e c t  connection wi th  t h e  d i f f e r e n t i a l  problem,, 

I n  general ,  s t a b i l i t y  is  a funct ion of only the  d i f f e rence  

The exact  so lu t ion  of an FDE converges t o  t h e  exact  so lu t ion  of 

i t s  corresponding PDE i f  t he  t runca t ion  e r r o r  of t h e  so lu t ion  goes t o  

zero as t h e  g r i d  s t eps  approach zero. 

Consistency and s t a b i l i t y ,  considered ind iv idua l ly ,  are only 

necessary,  not  s u f f i c i e n t  f o r  convergence. For a properly posed l i n e a r  

boundary va lue  problem, consis tency and s t a b i l i t y  together  c o n s t i t u t e  
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t h e  necessary as w e l l  as s u f f i c i e n t  condi t ions f o r  cdnvergence, 

Thus, it i s  s u f f i c i e n t  t o  ensure consis tency and numerical s t a b i l i t y  

of t h e  d i f f e rence  equations.  Convergence w i l l  then be implied. For 

a non-linear boundary va lue  problem, convergence can be proved by a 

method due t o  Strang. 25 

The consis tency requirement mentioned above is  s a t i s f i e d  f o r  

a l l  t h e  FDAs given i n  t h e  previous sect ion.  

t i o n ,  however, must be observed i n  a few r a t h e r  except ional  cases. 

Richtmyer quotes t h e  DuFort and Frankel  approximation t o  t h e  

A c e r t a i n  amount of cau- 

35 36 

simple p a r t i a l  d i f f e r e n t i a l  equation 

t h e  consis tency of t h e  method depends 

A t  are allowed t o  approach zero. I n  

u = u and demonstrates t h a t  

on t h e  way i n  which Ax and 

xx t 

the  present  work, s t a b i l i t y  i s  
aa 

ensured by s a t i s f y i n g  the  condi t ions obtained by Karplus'" and 

von Neumann' s23 methods. 

B,3 Selec t ion  of F i n i t e  Difference Scheme 

For a given p a r t i a l  d i f f e r e n t i a l  equation the re  are several 

14 FDAs each having i t s  own s t a b i l i t y  l i m i t s .  Sherman and Grey gave 

a de ta i l ed  d iscuss ion  of t he  present ly  known f i n i t e  d i f fe rence  

schemes f o r  t he  so lu t ion  of parabol ic  p a r t i a l  d i f f e r e n t i a l  equations.  

Two of t h e  widely known and used schemes are t h e  e x p l i c i t  and t h e  im- 

p l i c i t  methods. I n  both of t hese  methods, t h e  o r i g i n a l  non-linear 

PDEs are reduced t o  a set of l i n e a r  a lgebra ic  equations.  However, 

t he re  i s  one bas i c  d i f fe rence .  I n  t h e  e x p l i c i t  scheme, t h e  FDEs a t  
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a g r i d  po in t  can be solved independently of each o ther ,  whereas, i n  

t he  imp l i c i t  schemes, t he  FDEs a t  a new l i n e  o f  i n t eg ra t ion  must be 

solved simultaneously.  

I m p l i c i t  methods have gained wide favor because they are 

uncondi t ional ly  s t a b l e  f o r  a wide class of problems compared t o  simple 

e x p l i c i t  methods which are o f t e n  l imi t ed  by s t a b i l i t y  cons idera t ion  

t o  the  use of a s m a l l  s t e p  s i z e .  Unfortunately,  f o r  many complex 

problems including t h e  present  study, i m p l i c i t  methods are more com- 

plex s ince  i n  add i t ion  t o  the  main dependent va r i ab le s ,  t h e r e  are 

subs id ia ry  dependent va r i ab le s  and the  t a s k  of so lv ing  t h e  r e s u l t a n t  

simultaneous equat ions i s  d i f f i c u l t .  Also, though the  number of g r i d  

po in t s  a t  which computations a r e  needed i s  reduced, t he  number of com- 

puta t ions  a t  each g r i d  po in t  increases ,  hence i n  genera l  t h e  t o t a l  

t i m e  requi red  by the  problem i s  s t i l l  considerable .  

may not  restrict  t h e  s t e p  s i z e s ,  o ther  phys i ca l  cons idera t ions  l i k e  

accuracy and des i red  r e s o l u t i o n  may o f t e n  do so. 

Although s t a b i l i t y  

From t h e  above paragraph, it is  c l e a r  t h a t  the  more complex a 

problem becomes i n  terms of non- l inea r i t i e s ,  number of subs id ia ry  de- 

pendent v a r i a b l e s  o r  o ther  complexi t ies ,  t he  more necessary it  becomes 

t o  use t h e  most simple scheme. Addit ional  f a c t o r s  a r e  ease of program- 

ming and ease of checking the  program. 

an a l l - e x p l i c i t  numerical method is  used f o r  t h e  present  study. 

Based on these  cons idera t ions ,  



APPENDIX C 

NUMERICAL STABILITY ANALYSES OF THE FINITE DIFFERENCE EQUATIONS 

The two c r i t e r i a  used i n  the  present  ana lys i s  f o r  t e s t i n g  

d i f fe rence  equations f o r  s t a b i l i t y  are those due t o  Karplus22 and 

vonNeumann, 

and K a ~ l a n . ~ ~  

The latter method w a s  f i r s t  given by O'Brien, Hyman 

The methods as w e l l  a s  the der iva t ions  of t he  sta- 

b i l i t y  condi t ions a r e  presented here.  

C .1 Karplus ' Method 

C. 1.1 C r i t e r i o n  fo r  S t a b i l i t y  

Karplus developed a c r i t e r i o n  f o r  t he  s t a b i l i t y  of f i n i t e  

d i f fe rence  equations using an analogy with Kirchoff ' s  l a w s  i n  e lec-  

t r i c  c i r c u i t  theory.  The general  appl ica t ion  of t h i s  c i r c u i t  theory 

approach t o  f i n i t e  d i f fe rence  s t a b i l i t y  may be given as follows. 

The FDE, whose s t a b i l i t y  a t  t he  poin t  (m,n) i s  t o  be 

considered, represents  an approximation t o  a PDE, and i n  general ,  

it can be arranged as 

a [ F(&l,n) - F(m,n)] + b [F(m-1,n) - F(m,n)] 

-I- C [F(m,n+l) - F(m,n)] + d [F(m,n-1) - F(m,n)] = 0 

138 
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where F i s  the  dependent va r i ab le ,  and a, b ,  c, d are t h e  

c o e f f i c i e n t s  of t h e  d i f f e rence  t e r m s .  Also, t h e  c o e f f i c i e n t  a is 

p o s i t i v e  and m r e f e r s  t o  a bounded space coordinate .  

Then t h e  FDE is  s t a b l e  

1. i f  a l l  t h e  c o e f f i c i e n t s  are p o s i t i v e  

o r  

2. i f ,  when a l l  t h e  c o e f f i c i e n t s  are not  pos i t i ve ,  

t h e  sum of a l l  t h e  c o e f f i c i e n t s  is  negative.  (C-3) 

The c r i t e r i o n  is  a l s o  appl icable  to equat ions i n  several 

independent va r i ab le s  and t o  equations i n  which t h e  c o e f f i c i e n t s  

are .not constant  e Because of i t s  s impl i c i ty ,  Karplus' method is  

present ly  f ind ing  wide appl ica t ions .  

C .1,2 Determination of S t a b i l i t y  Conditions 

The numerical s t a b i l i t y  condi t ions of t h e  f i n i t e  d i f fe rence  

equations used i n  determining t h e  values  of t h e  flow parameters are 

derived by the  Karplus method. 

Momentum Equation 

Equation (88) is t h e  f i n i t e  d i f f e rence  form of t h e  momentum 

equation. To obta in  the  s t a b i l i t y  condi t ions f o r  t h i s  equation, it 

is  rearranged i n  the  form of Equation (C-1) t o  give 
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where 

+ 21.1 

@ +  
2hpL J 

To apply the  Karplus c r i t e r i o n ,  it is  necessary t o  determine 

t h e  s ign  of t h e  c o e f f i c i e n t  of t h e  f i r s t  t e r m  i n  Equation (C-4), i.e., 

t h e  s ign  of t h e  quant i ty  

From an order  of magnitude ana lys i s  and numerical experimentation, 

i t  is found t h a t  expression (C-6) is pos t t i ve , ,  i e e e ,  
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Examining the  inequal i ty  ((2-8) shows t h a t  

2 
and though 9 < 0 f o r  t h e  present  transformation, t h e  expression 

d$ 

Thus, condi t ion (C -8 )  becomes 

Acp > - p o s i t i v e  quant i ty  

i.e., 

(C-10) 

(C-11)  

rup has no l i m i t a t i o n  from s t a b i l i t y  considerat ion.  
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It is  seen i n  Equation ((2-4) t h a t  t h e  c o e f f i c i e n t s  are not  a l l  

of t h e  same sign. Thus, applying Karplus' condi t ion  (C-3), Equation 

(C-4) y i e l d s  

i.e., 

r 1 

Thus, t he  s t a b i l i t y  condi t ions f o r  Equation (88) are 

1. &p has no r e s t r i c t i o n  
c 9 

(C - 12) 

(C-13) 

(C-14) 

((2-15) 

Center l ine  Momentum Equation 

A t  t h e  c e n t e r l i n e ,  t h e  f i n i t e  d i f f e rence  form of the  momentum 

Arranging it i n  t h e  form cor re-  equation i s  given by Equation (91) 

sponding t o  Equation (C-1) r e s u l t s  i n  t h e  equation 

(C-16) 
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3 Mult iplying Equation (C-16) by Acp and rewr i t ing ,  

Examination of t h e  c o e f f i c i e n t  of t h e  f i r s t  t e r m  r evea l s  t h a t  

(C-17) 

Hence 4 has no s t a b i l i t y  r e s t r i c t i o n .  

A l l  t h e  c o e f f i c i e n t s  of Equation (C-16) are not  of the s a m e  

s ign,  hence, using condi t ion ((2-3) , Equation (C-16) y i e l d s  

i.e., 

Acp2 
1 AZ <- 

"m, n 

(C-20) 

(6-2 1) 



144 

Summarizing, t h e  s t a b i l i t y  condi t ions f o r  Equation (91) are 

1. nkp has no r e s t r i c t i o n  

AT2 
1 2. Az < - 

''m, n 

(C -22) 

(C-23) 

Diffusion Equation 

I n  order  t o  determine t h e  s t a b i l i t y  condi t ions of t h e  f i n i t e  

d i f fe rence  form of t he  d i f fus ion  equation, Equation (94) i s  rearranged 

i n  the  form of Equation ( C - 1 )  t o  g ive  

(C-24) 

where 

(C-25) 
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To apply Karplus 'c r i te r ion ,  it i s  necessary t o  determine t h e  s ign  

of t he  following expression 

(C-26) 

From an order  of magnitude a n a l y s i s  and some numerical experimentation, 

i t  w a s  found t h a t  expression (C-26)  is  pos i t i ve ,  i .e*,  

i.e., 

(C -28) 

Examining t h e  r i g h t  hand member of t h e  above inequal i ty  

(C-29) 
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2 
Also,  though 9 < 0 f o r  t h e  present  t ransformation,  t h e  expression 

dJI 
i n  t h e  denominator of t he  r i g h t  hand member is  pos i t i ve ,  i.e., 

Thus , 

3 4 > - [ p o s i t i v e  quan t i ty  

(C -30) 

(C -3 1) 

i.e., 

Olp has no s t a b i l i t y  l imi t a t ions .  

The c o e f f i c i e n t s  i n  Equation (C-24) are not  a l l  of t he  same s ign ,  

Therefore ,  using Karplus '  condi t ion  (C-3) ,  Equation ((2-24) y i e l d s  

i.e.,  
t 1 

Thus t h e  s t a b i l i t y  condi t ions  f o r  t h e  Equation (94) are 

1. Acp has no r e s t r i c t i o n  

t 1 

(C-32) 

(C -33) 

(C -34) 

(C -35) 
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Center l ine  Diffusion Equation 

A t  t h e  cen te r l ine ,  t he  f i n i t e  d i f f e rence  form of t h e  d i f fus ion  

equation is  given by Equation (97) 

sponding t o  Equation (6-1) r e s u l t s  i n  the  equat ion 

Arranging it i n  the  form cor re-  

3 Multiplying Equation (C-36) by AT and rewr i t ing  

(C-37) 

Examining t h e  c o e f f i c i e n t  of t he  f i r s t  term revea l s  t h a t  

i a e o 2  

a t P ' 0  

(C-38) 

(C-39 

Hence, aCp has no r e s t r i c t i o n  from s t a b i l i t y  considerat ion.  

Both t h e  c o e f f i c i e n t s  i n  Equation (C-36) are not of t h e  s a m e  

s ign ,  Hence, applying Karplus' condi t ion (c-3 t o  Equation ((2-35) 

y i e l d s  

(6-40)  
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. L  

i ,e. ,  

Summarizing, t h e  s t a b i l i t y  condi t ions f o r  Equation (97) are 

1. Arp has no r e s t r i c t i o n  

(C-41) 

(C -42) 

(C-43) 

C.2 Yon Neumann’s Method 

C .2.1 C r i t e r i o n  f o r  S t a b i l i t y  

The von Neumann s t a b i l i t y  a n a l y s i s  reported by OgBrien, Hyman 

and K a ~ l a n ~ ~  w a s  later extended by Lax and Richtmyer3’ who have shown 

va r ious  circumstances under which t h e  von Neumann condi t ion is  a 

s u f f i c i e n t  as w e l l  as a necessary condi t ion f o r  convergence., The 

Lax-Richtmyer a n a l y s i s  of s t a b i l i t y  i s  presented i n  d e t a i l  by Richt- 

myer3’ and t h e  following i s  a summary of t h e  same a n a l y s i s  presented 

here  f o r  t h e  sake of completeness, 

The d i f f e rence  equations are assumed t o  b e  l i n e a r  and two 

s p a t i a l  v a r i a b l e s  m and n are used, with n denoting t h e  axial 

d i r ec t ion .  Thus, t h e  following system of l i n e a r  d i f f e rence  equat ions 

wi th  constant  c o e f f i c i e n t s  i s  analyzed f o r  s t a b i l i t y s  
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(C -44) 

where 

,n+l 
U t he  so lu t ion  func t ion  of t h e  d i f f e rence  equation at t h e  

new l i n e ,  i - e * ,  vec to r  whose components are the  va lues  

of t h e  dependent v a r i a b l e s  a t  a poin t  of t he  new l i n e ,  

t he  so lu t ion  func t ion  a t  a poin t  of t he  previous l i n e .  ,n 
U 

- B t he  vec to r  whose components are pl, ,.* pd, t h e  

va lue  of which i n d i c a t e s  t he  poin t  of t he  new l i n e ,  

a p x p matr ix ,  where p is  t h e  number of dependent - B 

B var i ab le s .  The elements of t he  matrix are the  c o e f f i c i -  

e n t s  of t h e  t e r m s  of t h e  equat ions.  The supe r sc r ip t  

i n d i c a t e s  t he  l i n e ,  t h e  subscr ip t  t h e  poin t  on the  l i n e .  

( S i m i l a r  d e f i n i t i o n  holds  f o r  B, ). 
0 

B 

Summation over t he  p o i n t s  of t h e  new l i n e .  c 
Summation over t h e  previous l i n e .  

NO 

91 9 3 q d  Denotes t h e  coord ina tes  of a l a t t i c e  poin t .  
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The s t a b i l i t y  c r i t e r i o n  fo r  t h e  above d i f f e rence  equations is  

t h a t  t he  absolute  va lues  of t h e  eigenvalues of t he  ampl i f ica t ion  

matrix G(&, k) obey t h e  inequal i ty  
- 

f o r  0 < AZ < z 

i = 1, ... , p 
I hi 1 ,< 1 + O(Az> 

where 

G = - [ % I - '  [%I 

(C - 4 5 )  

(C -46) 

and 

Equation (C -45 )  is the  von Neumann necessary condi t ion fo r  

s t a b i l i t y ,  I n  t h e  present  study, cp is  a scalar and hence Equations 

( c - 4 7 )  and (C-48)  reduce to: 

ikacp 

NO 

(C -49) 

(C -50) 
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Determination of t h e  S t a b i l i t y  Conditions 

The numerical s t a b i l i t y  condi t ions of t h e  f i n i t e  d i f f e rence  

Equations (88) and (94) used i n  determining t h e  values  of t he  flow 

parameters are derived by von Neumann9s method. As required by t h i s  

method, Equations (88) and (94) are f i r s t  l i nea r i zed .  The no ta t ions  

of Richtmyer are used i n  t h i s  sec t ion .  35 

Momentum Equation 

The d i f f e rence  Equation (88) i s  r ewr i t t en ,  r e t a i n i n g  only 

the  l i n e a r  t e r m s  e 

n+l n 

A Z  

(C -5 1) 

Rearranging Equation (C-51) and s u b s t i t u t i n g  

0 -  - E  
rsp2 

(C-52) 



152 

leads t o  t h e  following equation 

n 
n+ 1 

m m 

(C-53) 

The matrices H, and HI can now b e  ca l cu la t ed  on s y b s t i t u t i n g  

t h e  Fourier  series f o r  t h e  dependent va r i ab le .  It is  t o  b e  noted 

t h a t  s u p e r s c r i p t s  n and n+l r ep lace  t h e  s u p e r s c r i p t s  0 and 1. 

n = [ -  1 + 2 p ~ v ~ r  2 CT[~*] ] 
m Bm (C -54) 



= 1  d-1 
Bm 
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(C-57) 

Substituting Equations (C-54) through (C-57) into Equation (C-58) 

y i e  Ids  

n 
= [ - 1 + 2ppvZr2[%l2 ] e ikmAcp 

m Hn 

(C-59) 

On simplifying, Equation (C-59) g ives  

- e  ik4 -ikAcp 1 
(C-60) 
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Using t h e  following i d e n t i t i e s  

ik@ + e-ikAcp - e  
2 COS kAcp = 

e ikacp .-ik&p 

2 i  s i n  k@ E 

and s implifying,  Equation (C-60) gives  

- [ 2 * +  d$ 2 v z r2 (ipaAy) s i n  Mu, 

Similar ly ,  using Equation (C-56), HI can be w r i t t e n  as 

(C-61) 

(6-62) 

(C-63) 

(C-64) 

(C-65) 

The ampl i f ica t ion  matr ix  G can be obtained by s u b s t i t u t i n g  Equations 

(C-60) and (C-65) i n t o  Equation (C-46) and s implifying 
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Using t h e  yon Meumann condi t ion ((3-45) Equation (C-67) y i e l d s ,  

a f t e r  s i m p l i f i c a t i o n ,  

f 
2 

1 - 4pPvZr ( J [ ~ $ ]  * 2  s i n 2  k 91 

r2 91 2 2 2  p. oO(Az) s i n  2 knkp 

d W 

The second t e r m  on t h e  l e f t  hand s i d e  i s  of order  (Az) and is  

neglected,  i n  comparison with t h e  f i r s t  t e r m .  Simplifying, t h e  

above inequa l i ty  becomes 

2 %  2 2ky]< 1 
- -+ [ 1 - 4pPvzr s i n  - 

(C-66) 

(C-67) 

(C-68) 

(C -69) 

Using t h e  p o s i t i v e  s ign ,  

0 2 0  (C-70) 



Using t h e  negat ive s ign,  

2 - 1 + 4ppvzr cr [z]  s i n 2  k 4  5 1 

Therefore 

15 6 

(C-71) 

(C-72) 

The minimum value  of cr i s  obtained when s i n 2  &&I? = 1 and is  given by 2 

(C-73) 

Thus, s u b s t i t u t i n g  Equation ((3-52) i n t o  Equations (C-70) and (C-73) 

gives 

1 1 1 
5 - - - 0 € . -  

2p r2pvZ 

i.e., 

(C -74) 

(C-75) 



157 

Diffusion Equation 

The d i f f e rence  Equation (94) i s  r ewr i t t en  r e t a in ing  only t h e  

l i n e a r  terms, 

n n 

(C-76) 

Using t h e  procedure as discussed i n  t h e  de r iva t ion  of t he  s t a b i l i t y  

condi t ion f o r  the  momentum equation and using t h e  von Neumann 

condi t ions (C-45), Equation (C-76) gives  

2 
2!Q?2 < 1 s i n  2 2  

2 -  - 1 + 4r p D12vzo [3-] 
After  s impl i f i ca t ion  Equation (C-77) becomes 

(C-77) 

The von Neumann condi t ions (C-75) and (C-78) f o r  t h e  momentum and 

d i f fus ion  equations are i d e n t i c a l  t o  the  Karplus condi t ions (C-15) 

(C -7 8) 

and (C-35) f o r  t he  same equations. 
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Thus, t h e  present  s t a b i l i t y  a n a l y s i s  leads  t o  t h e  observat ion 

t h a t  Karplus' c r i t e r i o n  is simpler t o  apply as compared t o  the  von 

Neumann c r i t e r i o n .  



APPENDIX D 

INITIAL DATA FOR FLOW CASES INVESTIGATED 

A t o t a l  of 57 flow cases w a s  i nves t iga t ed  f o r  t he  parametric 

study of t h e  confined je t  mixing problem. 

these  cases are a v a i l a b l e  b u t  are presented he re  f o r  only some 

se l ec t ed  cases. I n  a l l  t hese  cases, t h e  confining duct r a d i u s  R ,  

t h e  outer  stream dens i ty  pz ,  and t h e  outer  stream v i s c o s i t y  p2 

had t h e  following constant  values .  

Deta i led  r e s u l t s  of a l l  

1. R = 0.0833 f t .  

lbm . 
f t . sec . 3 .  = 0.124 

The values  of t h e  flow parameters a t  t h e  i n i t i a l  s ec t ion  are presented 

here  i n  t abu la r  form. 

15 9 
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